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Abstract 

Non-equilibrium dynamics have become a central research focus, exemplified by the counterintuitive Mpemba effect 
where initially hotter systems can cool faster than colder ones. Studied extensively in both classical and quantum 
regimes, this phenomenon reveals diverse and complex behaviors across different systems. This review provides 
a concise overview of the quantum Mpemba effect (QME), specifically emphasizing its connection to symmetry 
breaking and restoration in closed quantum many-body systems. We begin by outlining the classical Mpemba effect 
and its quantum counterparts, summarizing key findings. Subsequently, we introduce entanglement asymmetry 
and charge variance as key metrics for probing the QME from symmetry perspectives. Leveraging these tools, we ana‑
lyze the early- and late-time dynamics of these quantities under Hamiltonian evolution and random unitary circuits. 
We conclude by discussing significant challenges and promising avenues for future research.

1  Introduction
The Mpemba effect is a fascinating and counterintui-
tive phenomenon in which a hotter system can freeze 
faster than a cooler one under identical conditions. The 
phenomenon was notably brought to modern scientific 
attention in the  1960s by a student who observed that 
hot ice cream mixture froze quicker than a colder one 
[1]. The effect defies the conventional thermodynamics 
expectations, which suggest that a hotter system should 
always take longer to cool to a given temperature than 
a colder one. Such effects have been debated for centu-
ries, with historical accounts [2–4] dating back to ancient 
times, and it continues to intrigue scientists due to its 
complex and elusive nature [5, 6].

In classical systems, the Mpemba effect has been 
observed in a variety of contexts, each offering unique 
insights into its underlying mechanisms. One promi-
nent example is supercooling [7, 8], where a substance 

is cooled below its freezing point without undergo-
ing solidification. In such cases, the system may remain 
trapped in a metastable phase for an extended period 
before abruptly transitioning to the equilibrium state. 
Beyond supercooling, the effect has also been studied in 
granular fluids [9], where the interplay between particle 
interactions and energy dissipation can lead to anoma-
lous cooling behaviors. Similarly, in clathrate hydrate [10] 
and carbon nanotube resonators [11], unexpected cool-
ing patterns have been reported. Moreover, the Mpemba 
effect has been experimentally observed in classical 
Markovian systems, where stochastic system-bath inter-
actions drive the anomalous relaxation dynamics [12, 13]. 
Theoretical studies have identified distinct mechanisms 
behind this phenomenon: Ref. [14] shows that the effect 
arises when a hotter initial state has substantially smaller 
overlap with the system’s slowest-decaying eigenmodes 
compared to a colder state, enabling faster equilibration. 
In Ref.  [15], the authors introduce the strong Mpemba 
effect, where relaxation is exponentially accelerated for 
specific initial temperatures. This effect is characterized 
by the Mpemba index, an integer that counts the num-
ber of such special initial temperatures. Notably, the par-
ity of the index (odd or even) is a topological invariant of 
the system, ensuring robustness against small parameter 
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variations. They demonstrate that this effect persists even 
in the thermodynamic limit and is closely linked to ther-
mal overshooting—a phenomenon in which the tempera-
ture of the relaxing system exhibits non-monotonic decay 
over time. Despite these diverse observations, a uni-
versally accepted explanation for the classical Mpemba 
effect is still absent, with proposed mechanisms ranging 
from differences in thermal conductivity and evaporation 
rates to more intricate considerations of non-equilibrium 
dynamics. This phenomenon continues to be an active 
area of research within the scientific community [16–29].

In recent years, the focus of the Mpemba effect has 
expanded beyond classical physics, extending into the 
intriguing realm of quantum systems, which are gov-
erned by the principles of quantum mechanics. In quan-
tum regimes, the Mpemba effect can manifest in two 
distinct ways: through open quantum systems that inter-
act with an external environment or through isolated 
quantum systems that evolve under unitary dynam-
ics. Ref.  [30] explores the Mpemba effect in open quan-
tum systems using a quantum Ising model coupled to a 
thermal bath, revealing that metastable phases enable 
Mpemba-like behavior. Despite initial temperature dif-
ferences, the hotter system reached equilibrium faster 
after a thermal quench, showing transient magnetiza-
tion dynamics governed by Lindblad evolution. This 
confirms that quantum effects preserve rather than dis-
rupt the Mpemba phenomenon in supercooled systems. 
Given the prevalence of the Mpemba effect in classical 
Markovian systems, a natural question arises: Can this 
phenomenon also occur in open quantum Markovian 
systems? In Markovian systems described by Lindblad 
dynamics, researchers discovered that a unitary rotation 
can suppress the slowest-decaying eigenmode, leading to 
exponentially accelerated relaxation—a signature of the 
strong Mpemba effect [31]. Ref. [32] presents a protocol 
for generating the strong Mpemba effect by implement-
ing precisely controlled rotational operations on a single 
trapped ion initialized in its ground state. However, faster 
relaxation alone does not guarantee the Mpemba effect; 
the system must also start sufficiently far from equilib-
rium, as shown through free-energy analysis of specially 
prepared initial states [33]. Variants like the inverse 
Mpemba effect (where a colder system heats up faster) 
using a single trapped ion qubit, provide experimental 
evidence of this phenomenon in a quantum system [34], 
while mixed versions of Mpemba effect, where relaxation 
speed depends on both thermal and non-thermal effects, 
appear in quantum dots due to intermediate relaxation 
modes [35]. Non-Hermitian systems exhibit even richer 
relaxation dynamics, with multiple observable cross-
ings—such as ground-state energy, entropy, and distance 
to the steady state—emerging during thermalization [36]. 

Recent studies [37–48] have extensively investigated the 
Mpemba effect in other open Markovian quantum sys-
tems, analyzing its emergence under different conditions. 
Beyond Markovian regimes, non-Markovian dynam-
ics introduce new possibilities like the extreme quan-
tum Mpemba effect [49], where systems exploit memory 
effects to achieve ultra-fast equilibration. Ref. [50] devel-
ops a non-Markovian exact master equation to study 
quantum system dynamics, revealing how memory 
effects and system-bath correlations lead to deviations 
from standard Markovian relaxation.

The quantum Mpemba effect (QME) [51] reveals a 
remarkable non-equilibrium phenomenon in isolated 
quantum systems: symmetry restoration occurs faster in 
states that initially exhibit stronger symmetry breaking. 
This closed-system manifestation of QME is especially 
intriguing because relaxation dynamics are governed by 
intrinsic quantum fluctuations, unlike in open quantum 
systems, where environmental dissipation typically domi-
nates. This effect emerges following a global quantum 
quench, where the system is prepared in a pure, non-
equilibrium state and evolves under unitary dynamics. 
Recent studies have reported the QME in both integra-
ble and chaotic quantum systems [52–54], with notable 
examples including the rapid restoration of U(1) sym-
metry when quenching from highly asymmetric initial 
states under a U(1)-symmetric Hamiltonian [55–65]. 
These findings have since been extended to various other 
settings. Notably, Refs.  [66–69] explore dynamical sym-
metry restoration and non-equilibrium quantum dynam-
ics in one-dimensional spin chains, with particular focus 
on phenomena like the QME and the role of integrabil-
ity. The QME has also been discovered in strongly dis-
ordered, many-body localized systems (MBL) [70]. This 
study extends the understanding of anomalous thermali-
zation dynamics to disordered, non-ergodic systems, 
revealing how MBL alters the interplay between symme-
try and relaxation. The imaginary-time QME [71], where 
certain initial states converge faster to the ground state 
under imaginary-time evolution compared to others, 
has been reported in various physical systems. Ref.  [72] 
reveals that the QME can even be realized in non-Hermi-
tian systems. Recent studies [73, 74] have extended inves-
tigations of anomalous relaxation to random quantum 
circuits, revealing universal dynamical features like sym-
metry restoration and characteristic relaxation scaling. 
Furthermore, Ref. [75] identifies a measurement-induced 
QME in monitored quantum systems. Additionally, 
Refs.  [76, 77] systematically examine the QME under 
non-integrable Hamiltonian evolution. Extensions to 
higher-dimensional systems have also revealed new 
insights into entanglement propagation and thermaliza-
tion [78, 79]. A microscopic mechanism for the QME in 
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generic integrable systems has been proposed, linking it 
to quasiparticle excitations [80]. Furthermore, the QME 
has been experimentally demonstrated in trapped-ion 
quantum simulators [81]. Remarkably, this effect per-
sists even in the presence of experimental imperfections 
like noise and disorder. This experimental realization 
provides crucial insights: when symmetry restoration is 
driven purely by environmental decoherence, no QME 
crossings occur, establishing that intrinsic quantum fluc-
tuations are essential for the effect. In this review, we 
examine the QME through the lens of symmetry break-
ing and restoration, highlighting its manifestation in both 
Hamiltonian and random circuit dynamics. Our discus-
sion underscores the QME’s significance in advancing the 
understanding of non-equilibrium quantum dynamics.

The remainder of this review is structured as follows. 
In Section  2, we introduce two complementary diag-
nostic measures—entanglement asymmetry and charge 
variance—to systematically quantify how far a system 
deviates from equilibrium. Section  3 investigates the 
emergence of the QME in scenarios where subsystem 
symmetry is restored at late times. In Section  4, we 
explore the robustness of the QME when subsystem’s 
symmetry remains broken at late times. Finally, Section 5 
concludes by outlining key unsolved questions and prom-
ising future directions in the study of non-equilibrium 
quantum phenomena.

2 � The metrics
Many potential candidates exist to quantify the dis-
tance of a system to its equilibrium state, but three have 
been particularly prominent in the study of quantum 
dynamics. The quantum relative entropy, defined as 
S(ρ(t)||ρeq) = Tr[ρ(t)(log ρ(t)− log ρeq)] , compares the 
time-evolved density matrix ρ(t) with the steady-state 
equilibrium ρeq and is closely tied to non-equilibrium free 
energy. It has been utilized in investigations of the QME 
[33, 35]. Another key measure, the trace distance, defined 

as dTr(ρ(t)) = 1
2Tr

√
A†A , where A = ρ(t)− ρeq , is par-

ticularly useful due to its monotonic decay under Marko-
vian dynamics. This property has enabled experimental 
studies of strong and inverse QMEs [32, 34]. In contrast, 
the Frobenius distance, defined as dF (ρ(t)) =

√
TrA†A , 

offers a simpler computational alternative to the trace 
distance, though it lacks monotonicity in Markovian sys-
tems [31].

While these measures offer different insights into 
equilibration, recent work suggests that entanglement 
asymmetry is a practical, easy-to-measure proxy for the 
distance to an equilibrium state. This measure originates 
from the study of entanglement properties in quantum 
many-body systems and has been widely employed to 
quantify symmetry breaking in both quantum field theo-
ries [82–84] and out-of-equilibrium many-body systems 
[66, 73, 80]. To define this quantity, we typically partition 
the entire system into a subsystem A and its complement 
A . The reduced density matrix for subsystem A, denoted 
as ρA , is obtained by tracing out the degrees of freedom 
in A , expressed as ρA = TrA(ρ) . Here, ρ represents the 
density matrix for the entire system. The entanglement 
asymmetry (EA) [52] is defined as:

where Sn(ρ) = 1
1−n log Tr(ρ

n) is the n-th Rényi 
entropy. In the limit n → 1 , the Rényi entropy reduces 
to the Von Neumann entanglement entropy, given by 
S(ρ) = −Tr(ρ log ρ) . Here, ρA,Q = q∈Z�qρA�q where 
Q̂A =

∑

i∈A σ z
i  in case of U(1) symmetry and �q is the 

projector onto eigenspace of Q̂A with charge q. Conse-
quently, ρA,Q is block diagonal in the eigenbasis of Q̂A . A 
schematic representation of ρA and ρA,Q is illustrated in 
Fig.  1. The EA satisfies two key properties: (1) �SA ≥ 0 
since the EA is defined as the relative entropy between 
ρA,Q and ρA . (2) �SA = 0 if and only if ρA,Q = ρA . There-
fore, EA quantifies the degree of symmetry breaking in 
subsystem A by measuring the distinguishability between 

(1)�SnA = Sn(ρA,Q)− Sn(ρA),

Fig. 1  The reduced density matrix of subsystem A, denoted as ρA , and its symmetry-projected counterpart, ρA,Q , are illustrated in the definition 
of entanglement asymmetry. Each blue block corresponds to a specific U(1) symmetry sector with a fixed charge Q. In ρA , the light green 
background highlights off-diagonal matrix elements between different charge sectors. In contrast, ρA,Q (white background) contains 
no off-diagonal elements between different Q sectors
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the reduced density matrix ρA and its symmetry-pro-
jected counterpart ρA,Q . Note that the symmetry for sub-
system mixed states investigated here corresponds to the 
concept of weak symmetry in Refs. [85, 86].

In the experimental implementation, EA is measured 
by determining the Sn(ρA,Q) of the subsystem state. The 
first method [81] involved obtaining the subsystem den-
sity matrix ρA via quantum state tomography, leverag-
ing the classical shadow framework [87]. The required 
block-diagonal state ρA,Q was then computed numerically 
from ρA via projection. An alternative protocol prepares 
the required block-diagonal state ρA,Q by applying local 
random unitary gates U that preserve the symmetry 
structure. This operation effectively dephases the sub-
system by decohering the off-block-diagonal elements of 
the density matrix, directly yielding a state on quantum 
hardware in the desired block-diagonal form ρA,Q . The 
entropy Sn(ρA,Q) of this prepared state was then meas-
ured using randomized measurements [88] on the sub-
system. Both protocols exhibit an inherent exponential 
complexity with respect to the subsystem size for general 
states.

In parallel with the EA analysis, we also compute the 
charge variance (CV), defined as

where Q̂ =
∑L

i=1 σ
z
i  represents the total charge opera-

tor for a system of size L and the expectation value �Q̂� 
is defined as �Q̂� = Tr(ρQ̂) . If the expectation value �·� 
is taken with respect to a U(1)-symmetric state where 
the state resides entirely within a single charge sector, 
then σ 2

Q = 0 . Conversely, if the state’s charge distribu-
tion spans multiple sectors, the charge variance becomes 
nonzero. CV can be measured directly on the computa-
tional basis, which is simpler than EA measurement pro-
tocols discussed above.

The quantum Mpemba effect describes a scenario 
where a system initially “further” from a target state 
(e.g., hotter, or with more pronounced symmetry break-
ing) can reach it faster than a system that started “closer”. 
More formally, consider two identical quantum systems 
prepared in distinct initial states, described by density 
matrices ρ1(0) and ρ2(0) . Let O(t) be a relevant physical 
observable characterizing the system’s proximity to equi-
librium or a symmetric state. If, without loss of generality, 
O(ρ1(0)) > O(ρ2(0)) , the QME is said to occur if there 
exists a characteristic time tQME such that this inequality 
inverts for subsequent times, i.e., O(ρ1(t)) < O(ρ2(t)) for 
t > tQME.

This general definition applies to various metrics. 
For instance, when using entanglement asymme-
try, if �Sn(ρ1(0)) > �Sn(ρ2(0)) , namely state ρ1(0) 

(2)σ 2
Q = �Q̂2� − �Q̂�2,

exhibits stronger initial symmetry breaking than ρ2(0) , 
the QME manifests when the system evolving from 
ρ1(0) achieves a lower EA value at later times, i.e., 
�Sn(ρ1(t)) < �Sn(ρ2(t)) for t > tQME . Similarly, for 
charge variance, if initially σ 2

Q(ρ1(0)) > σ 2
Q(ρ2(0)) , the 

QME in CV occurs when σ 2
Q(ρ1(t)) < σ 2

Q(ρ2(t)) for 
t > tQME.

The crossing timescale tQME depends on the initial 
states, the specific observable, and the underlying physi-
cal model. In many contexts, such as EA dynamics during 
symmetry restoration in chaotic systems, this crossing 
occurs at relatively early times, potentially on the order of 
the subsystem size. Furthermore, by comparing the initial 
ordering of the observable with its ordering in the late-
time steady state, one can infer the parity of the num-
ber of crossings: if the initial order O(ρ1(0)) > O(ρ2(0)) 
inverts to O(ρ1(t → ∞)) < O(ρ2(t → ∞)) , then for con-
tinuous evolution, an odd number of crossings (at least 
one for QME) must occur. Conversely, if the initial order 
is preserved at late times, an even number (could be zero) 
of crossings is implied.

3 � Symmetry restoration dynamics
3.1 � U(1)‑asymmetric initial states with U(1)‑symmetric 

random circuit
The random circuit [89–93], depicted in Fig.  2, is con-
structed from two-qubit random U(1)-symmetric gates 
and random Haar gates, arranged in a brick-wall pat-
tern. The U(1)-symmetric gates are designed to preserve 
the charge sector, with their matrix form explicitly illus-
trated in Fig. 2. Each block within these gates is randomly 
drawn from the Haar measure [94–96]. Importantly, due 
to the U(1)-symmetric nature of these gates, there are 
no matrix elements connecting different charge sectors, 
which enforces the conservation of charge within each 
sector. The degree of symmetry breaking is governed by 
the doping probability PHaar , which sets the probability of 
replacing a U(1)-symmetric gate with a random Haar gate 
at any given site. The fully symmetric case, PHaar = 0 , 
corresponds to a U(1)-symmetric random circuit.

The time evolution of the circuit is discretized, with 
each time step corresponding to the application of two 
consecutive layers of gates. The unitary operator U gov-
erning the evolution between two consecutive time steps 
t and t + 1 is defined as:

where the second (first) bracket represents the operations 
applied in the first (second) layer of the time step. Here, 
Ui,i+1 denotes either a U(1)-symmetric gate or a random 
Haar gate acting between qubits i and i + 1 . The state 

(3)
U = (U1,LUL−1,L−2...U2,3)(UL,L−1UL−2,L−3...U1,2)
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|ψ(t + 1)� at time t + 1 is updated from the state |ψ(t)� 
through the action of the unitary operator U as:

This process is iterated to evolve the state over mul-
tiple time steps. And E[�SnA] is computed by averaging 
�SnA over different circuit configurations. In the following 
study, we consider three initial states: the ferromagnetic 
state |000...0� , the antiferromagnetic state |0101..01� and 
the domain-wall state |000..111� , where the domain wall 
is positioned at the center of the chain. To incorporate 
the effect of symmetry breaking in the initial state, we 
introduce tilted ferromagnetic states defined as:

where σ y
j  is the Pauli-y matrix acting on the j-th qubit, 

and θ is a tuning parameter that controls the strength 
of symmetry breaking in the initial state. When θ = 0 , 
Eq. (5) is U(1)-symmetric, resulting in a vanishing EA. As 
θ increases, the EA grows, reaching its maximum value at 
θ = π/2 . The tilted antiferromagnetic and tilted domain 
wall states are constructed in a similar manner.

As shown in Fig.  3a, the early-time QME emerges in 
the U(1)-symmetric random circuit for tilted ferromag-
netic states: states with stronger initial asymmetry (larger 
EA) decay faster than those with weaker asymmetry. 
This behavior originates from the distinct thermalization 
rates across different charge sectors. Specifically, states 
with greater overlap in the QA = 0 sector thermalize 
more slowly due to the restricted Hilbert space dimen-
sion (dim = 1). For instance, the θ = 0.2π state decays 

(4)|ψ(t + 1)� = U |ψ(t)�.

(5)|ψi(θ)� = e
−i θ2

∑

j σ
y
j |000...0�,

slowest because it dominantly populates QA = 0 . The 
QME similarly appears for tilted domain wall states, fol-
lowing the same mechanism. However, tilted antiferro-
magnetic states display no QME signature, as states with 
increasing tilt angle θ have larger overlap with smaller 
charge sectors. In contrast, Fig. 3b shows that the QME 
vanishes when the circuit comprises only random Haar 
gates, as no well-defined charge sectors exist in this case. 
We further investigate the results of other symmetry 
groups [53]. The absence of QME persists in Z2-symmet-
ric circuits due to the fact that the Hilbert space dimen-
sions associated with the two parity sectors QA = 1 and 
QA = −1 are exactly equal. However, we observe that 
QME re-emerges in SU(2)-symmetric circuits due to the 
varying sizes of symmetric sectors.

3.2 � U(1)‑symmetric (asymmetric) initial states with U(1) 
non‑symmetric random circuit

We now investigate the early-time dynamics of entan-
glement asymmetry in U(1) non-symmetric random cir-
cuit, where symmetry-breaking effects are introduced 
via random Haar gates. The unitary evolution operator U 
(defined in Eq. (3)) is thus modified by substituting a frac-
tion of U(1)-symmetric gates with random Haar gates, 
while the state |ψ(t)� still updates according to Eq. (4).

We begin by studying the early-time EA dynam-
ics of a U(1)-symmetric initial state evolving under a 
U(1) non-symmetric random circuit. The circuit under 
investigation consists of 16 qubits. We evaluate the EA 
at different doping probabilities of random Haar gates, 
using an antiferromagnetic initial state. Despite the 
absence of QME in early-time dynamics, all EAs show 

Fig. 2  Schematic illustration of a 6-qubit non-symmetric random circuit with periodic boundary conditions. Gates are arranged in the even-odd 
brick-wall pattern. The blue and red rectangles represent U(1)-symmetric and random Haar gates, respectively. The basis for the U(1)-symmetric gate 
is listed in the following order: |00� , |01� , |10� and |11�
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nontrivial overshooting at some early time steps, char-
acterized by a peak in EA that significantly exceeds its 
late-time saturation value. For all probabilities chosen 
in Fig.  4a, all EAs reach their maximum after only a 
few layers of unitaries. The rate of symmetry restora-
tion also depends on the initial state: for antiferromag-
netic or domain wall states, symmetry is restored faster 
than for ferromagnetic states. This difference arises due 
to the larger Hilbert space sector of the initial states in 
the former cases. Furthermore, Fig. 4b reveals that the 
peak of the circuit-averaged EA, E[�SL/4]max follows a 
power-law with respect to PHaar across all initial states 

investigated. This scaling behavior, however, appears to 
hold only for small PHaar < 0.1.

Next, we examine the evolution of EA for initial states 
tilted by an angle θ . By systematically varying the param-
eters such as PHaar and the initial state |ψθ(0)� , we explore 
the conditions under which the QME emerges. As shown 
in Fig.  5, we compute the EA for both U(1) symmetry 
with Q̂A =

∑

i∈A σ z
i  and Z2 symmetry with Q̂A =

∏

i∈A σ z
i  

for U(1)-asymmetric initial states, i.e. a tilted ferromag-
netic state. As depicted in Fig.  5a, for PHaar = 0 , we 
clearly notice the emergence of QME in the U(1) case. 
Surprisingly, we also find that the QME appears in the 

Fig. 3  Panels (a) and (b) show the EA dynamics of subsystem A = [0,N/4] for random quantum circuits with PHaar = 0 and PHaar = 1 , respectively. 
The system size is N = 16 and N = 8 in (a) and (b), respectively. The inset of (a) shows the overlaps of ρA with different charge sectors ranging 
from {0, . . . ,N/4} . The QME is observed in U(1)-symmetric random circuits while it is absent in random circuits without any symmetry. Figure 
reprinted from Ref. [53]

Fig. 4  a The circuit-averaged EA, E[�SL/4] , as a function of time with the antiferromagnetic initial state at different values of PHaar . b The peak value, 
E[�SL/4]max , as a function of PHaar . All three curves follow a power law y = axb . F: Ferromagnetic state ( a = 1.4 , b = 0.4 ); DW: Domain Wall state 
( a = 2.7 , b = 0.8 ); AF: Antiferromagnetic state ( a = 1.9 , b = 0.9)
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Z2 probe, which does not contradict the previous study 
[53] suggesting the absence of QME in Z2-symmetric 
circuits. Even though U(1)-symmetric gates are also Z2 
symmetric, there is no off-diagonal coupling between 
sectors |00� and |11� , leading to different thermalization 
rates between two Z2 charge sectors ( QA = ±1 ), and thus 
resulting in QME.

As we replace a portion of U(1)-symmetric gates with 
random Haar gates, QME remains evident even with a 
finite number of random Haar gates. However, when the 
circuit consists entirely of random Haar gates, all charge 
sectors thermalize at the same rate after circuit averaging, 
and QME disappears. Additionally, initial information, 
such as the dependence on different θ-values, is erased 
after applying just one layer of Haar gates. Furthermore, 
we identify one general property in Fig. 5. For the same 
θ and PHaar , the Z2 EA is consistently smaller than U(1) 
EA. This is because the Z2 charge sectors consist of only 
two sub-blocks, whereas the U(1) sectors involve smaller 
blocks.

Additionally, we study the early-time EA dynamics 
for both a tilted domain wall and a tilted antiferromag-
netic state. Our findings reveal that QME is present in 
the tilted domain wall state when PHaar is less than 1. 
For all three initial states under consideration, the EA 
curves corresponding to different values of the tilt angle θ 

converge after the application of a single layer of random 
Haar gates when PHaar = 1 , indicating the disappearance 
of QME.

In parallel with the EA analysis, we also compute the 
early-time dynamics of charge variance. As illustrated in 
Fig. 6, CV for initial states exhibiting a stronger symme-
try-breaking effect (large θ ) stabilize much more rapidly 
than for states with a weaker symmetry-breaking effect, 
consistently across all initial conditions. Consequently, 
the early-time dynamics of CV reveal no indication of 
QME in this context. In all the scenarios considered 
above, we observe that late-time EAs approach zero, 
irrespective of whether the random circuit exhibits 
U(1) symmetry or not. This behavior can be understood 
through the lens of quantum thermalization and infor-
mation scrambling [97–100]. Specifically, for random 
circuit dynamics, the reduced density matrix of the sub-
system converges to a fully mixed state, as long as the 
subsystem size does not exceed half of the total system 
size. Similarly, the late-time CV for different initial states 
also approaches the same saturating value.

In Table  1, we provide a summary of the behavior of 
entanglement asymmetry and charge variance at early 
and late times for U(1)-asymmetric states in the circuit 
model. The quantum Mpemba effect occurs only in the 
early-time dynamics of entanglement asymmetry for tilted 

Fig. 5  The circuit-averaged EA, E[�SL/4] , as a function of time for different values of PHaar . Blue: U(1) EA. Green: Z2 EA. A larger θ corresponds 
to a stronger initial symmetry breaking in the system’s state. Panels a–d correspond to different values of PHaar a PHaar = 0 , b PHaar = 0.3 , c 
PHaar = 0.7 , and d PHaar = 1 , respectively
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ferromagnetic and tilted domain wall states. Moreover, the 
entanglement asymmetry and charge variance approach 
distinct values, which are universal across all initial states, 
at late times.

3.3 � U(1)‑asymmetric initial states with U(1) symmetric 
Hamiltonian

In Hamiltonian dynamics, the initial state |ψ(0)� under-
goes unitary evolution, leading to the time-evolved state 
e−iHt |ψ(0)� . The Hamiltonian H governing this evolution 
is defined as:

where � and �2 are the coefficients for nearest-neighbor 
and next-nearest-neighbor interactions, respectively. 
The term �2 introduces non-integrability into the sys-
tem, while γ controls the strength of anisotropy, breaking 
the system’s U(1) symmetry when γ  = 1 . Here, we focus 
on the isotropic case ( γ = 1 ), where the U(1) symmetry 

(6)

H =− 1

4

L1
∑

j=1

[

σ x
j σ

x
j+1 + γ σ

y
j σ

y
j+1 +�σ z

j σ
z
j+1

]

− J2

4

L2
∑

j=1

[

σ x
j σ

x
j+2 + σ

y
j σ

y
j+2 +�2σ

z
j σ

z
j+2

]

,

associated with spin conservation along the z-axis is pre-
served. Open boundary condition requires L1 = L− 1 
and L2 = L− 2 . In contrast, periodic boundary condi-
tions enforce L1 = L2 = L with σα

L+1 = σα
1  and σα

L+2 = σα
2

for α = x, y, z.
Figure  7 shows the time evolution of entanglement 

asymmetry for both integrable and non-integrable 
Hamiltonians under open and periodic boundary con-
ditions. We observe that initial states with higher 
asymmetry ( θ = 1.5 ) relax faster than those with less 
asymmetry ( θ = 1 ) in all cases, demonstrating the 
emergence of QME and its broad relevance. However, 
a fundamental question arises: What is the microscopic 
origin of QME? An explanation has been provided for 
one-dimensional integrable quantum systems. Integra-
ble quantum systems possess infinitely many conserved 
quantities, leading to unique non-equilibrium dynam-
ics governed by quasiparticle excitations [101–103]. 
These excitations become the essential ingredient to 
explain the QME. In a quantum quench, the initial state 
acts as a source of quasiparticle pairs emitted homoge-
neously, propagating at fixed velocities. As illustrated in 
Fig. 8, entangled pairs from the same point spread cor-
relations, while their separation reduces entanglement 
asymmetry in a subsystem A. When one quasiparticle 
leaves A, its contribution to EA vanishes, leading to 
symmetry restoration. The QME emerges from two key 
factors: (1) more asymmetric initial states contain more 
symmetry-breaking quasiparticle pairs, and (2) these 
pairs propagate at state-dependent velocities. When 
the dominant symmetry-breaking pairs in a highly 
asymmetric state happen to be faster, they exit A more 
quickly, causing faster EA decay. This explains why 
greater initial asymmetry can lead to faster relaxation. 
The exact conditions for QME depend only on the ini-
tial quasiparticle density and their velocities—quanti-
ties computable via Bethe Ansatz for generic integrable 
systems [80]. In terms of generic non-integrable cha-
otic systems, the mechanism for understanding QME is 

Fig. 6  Dynamics of circuit averaged CV, E
[

σ 2
Q

]

 , for different U(1)-asymmetric initial states in U(1) non-symmetric random circuit for PHaar = 0.05 . The 
left, middle, and right panels correspond to tilted ferromagnetic, tilted domain wall, and tilted antiferromagnetic initial states, respectively

Table 1  The early- and late-time behavior of entanglement 
asymmetry (EA) and charge variance (CV) under the evolution 
of random circuits with 0 ≤ PHaar < 1 . Crossing in EA (CV) means 
when the time-evolution curves of EA (CV) for states with larger 
θ intersect with those for smaller θ at early times. The constant C 
independent of θ can be evaluated as Tr(ρQ2)− Tr(ρQ)2 , where 
ρ = I

2L
 is the late-time density matrix for the subsystem and I is an 

2L × 2L identity matrix

Ferromagnetic Domain wall Antiferromagnetic

EA (early time) Crossing Crossing No crossing

CV (early time) No crossing No crossing No crossing

EA (late time) 0 0 0

CV (late time) C C C
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similar to what we discussed in symmetric circuit cases 
where relaxation speeds are different for symmetry sec-
tors of different dimensions.

The late-time EA in this case shows two distinct 
behaviors in the thermodynamic limit, depending on 
the nature of the quantum system. In chaotic systems, 

Fig. 7  The time evolution of the entanglement asymmetry �SA is studied for different tilted ferromagnetic states with system size L = 10 . Panels (a) 
and (b) correspond to an integrable Hamiltonian with J2 = 0 under periodic boundary conditions (PBC). In contrast, panels c and d depict results 
for a non-integrable Hamiltonian with J2 = 1 , examining both periodic and open boundary conditions (OBC). Figure reprinted from Ref. [52]

Fig. 8  Quasi-particle interpretation of entanglement asymmetry. The system is partitioned into subsystem A and its complement A . Entangled 
quasi-particle pairs with opposite momentum are emitted throughout the system. Only quasi-particles within A contribute to the entanglement 
asymmetry (solid blue lines). Those that leave A or reside entirely in A (dashed blue lines) make no contribution to the EA. Figure reprinted 
from Ref. [51]
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EA vanishes in the thermodynamic limit. This behav-
ior stems from the thermalization properties of cha-
otic quantum systems: when a closed quantum system 
evolves under a chaotic Hamiltonian, the reduced density 
matrix of a small subsystem A thermalizes to the equi-
librium finite-temperature state: ρA ∝ e−βĤA where ĤA is 
the Hamiltonian of the subsystem [104–106]. Symmetry 
is restored at later times for symmetric Hamiltonian ĤA , 
since [Q̂A, ρA] = 0 where Q̂A represents the correspond-
ing symmetry generator. In contrast, the value of steady-
state EA is not necessarily zero for integrable systems 
where the late-time states are expected to be the general-
ized Gibbs ensemble [56, 60, 107–109], as identified for 
tilted antiferromagnetic initial states [65].

3.4 � U(1)‑asymmetric initial states with U(1)‑symmetric 
many‑body localized Hamiltonian

Symmetry restoration and QME have also been stud-
ied in MBL systems [70] which also respects the U(1) 
symmetry as particle conservation. Unlike integrable 
or chaotic systems, where QME depends on the initial 
state, MBL phases exhibit QME universally for any tilted 
product state. Notably, the timescale for QME grows 
exponentially with subsystem size, reflecting the loga-
rithmic lightcone nature of MBL dynamics [110–121]. 
Remarkably, the subsystem symmetry fully restores in 
the long-time limit, even though the steady state never 
thermalizes. These findings reveal a unique mechanism 
in MBL systems, distinct from thermal or integrable 
regimes, where symmetry restoration and QME are pre-
sent without thermal equilibrium. The underlying mech-
anism in MBL systems can be analytically understood 
via the completely diagonalized effective model for MBL 
[122] and the results are qualitatively the same for both 
random disorder and quasiperiodic potential induced 
MBL [123–125].

4 � Symmetry breaking dynamics
In this section, we focus on quench dynamics with non-
vanishing steady-state EA.

4.1 � U(1)‑symmetric initial states with U(1) non‑symmetric 
Hamiltonian

We now examine both early- and late-time dynamics of 
EA and CV in non-symmetric Hamiltonians, investigat-
ing whether QME persists in this regime. The symme-
try breaking originates from the anisotropy ( γ  = 1 ) in 
Eq.  (6). We examine two distinct Hamiltonians: (1) H1 
with parameters � = 0.4 , J2 = 0 (2) H2 with parameters 
� = 0.4 , J2 = 0.2 , �2 = 1 for a 12-site system. We begin 
by investigating the EA dynamics when U(1)-symmetric 
initial states evolve under these U(1) non-symmetric 
Hamiltonians. As revealed in Fig. 9a, b, we calculate EA 

for various Hamiltonian symmetry-breaking values γ and 
observe that EAs also exhibit peaks at early times that are 
much larger than steady values. Furthermore, the peak 
value of the EA, (�SL/3)max , is found to be correlated 
with the strength of symmetry breaking, 1− γ , for differ-
ent symmetric initial states as shown in Fig. 9c where EA 
of the ground state of H1 follows the same trend. Nota-
bly, the peak heights nearly coincide between the ferro-
magnetic and domain wall states, as the early-time peak 
primarily depends on the local configurations of the ini-
tial state. We conclude that the EA overshooting at early 
times is a generic feature for asymmetric evolution start-
ing from symmetric initial states.

By analyzing Fig. 9, we identify that the late-time EA, 
denoted as �S∞L/3 , oscillates and does not approach 
zero. This is because the reduced density matrix of sub-
system A evolves towards a thermal equilibrium state 
e−βĤA , where ĤA has the same form as Ĥ in Eq. (6), but 
acts solely on subsystem A. Since ĤA includes symmetry 
breaking terms, [ρA, Q̂A] �= 0 , leading to a non-vanish-
ing EA at long times. In Fig. 9d, we calculate the ratio of 
�S∞L/3 to the peak value (�SL/3)max with varying γ for dif-
ferent initial states. The late-time EA, �S∞L/3 , is obtained 
by averaging �SL/3 over 2000 random time points 
between t1 = 2000 and t2 = 40000 . The results further 
confirm the overshooting behavior as the late-time satu-
rating EA value is much lower than the peak value at the 
early time. On the contrary, the CV dynamics in this set-
ting shows no evident overshooting pattern but instead 
directly grows to the saturating values.

4.2 � U(1) asymmetric initial states with U(1) non‑symmetric 
Hamiltonian

We now consider U(1)-asymmetric initial states. As 
illustrated in Fig.  10a and  b, we observe the emergence 
of QME at early times in the symmetric Hamiltonian 
γ = 1 . Here, we focus on QME between two initial states, 
θ = 0.2π and θ = 0.5π . The origin of this QME can 
be attributed to the relatively small ZZ term and gap-
less nature of the Hamiltonian [67]. As we deviate from 
the symmetric point ( γ = 1 ), the overall value of EA 
increases, exceeding the value found in the symmetric 
case. This behavior aligns with our expectations, as the 
symmetry-breaking effects now originate from both the 
initial state and the Hamiltonian governing the dynam-
ics. It is worth noting that the EA curve for initial states 
with stronger asymmetry rises higher than for states with 
weaker asymmetry when 1− γ �= 0 , eventually leading to 
the disappearance of QME. Additionally, the threshold at 
which QME vanishes varies depending on the type of ini-
tial states. QME persists for ferromagnetic states in the 
range 0.8 ≤ γ ≤ 1 and for antiferromagnetic states in the 
range 0.4 ≤ γ ≤ 1 . The robustness of QME against weak 
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symmetry-breaking is a general characteristic of quan-
tum many-body systems when the Hamiltonian breaks 
the symmetry.

We also investigate the late-time entanglement asym-
metry. As evident from Fig. 10c, d, the steady-state value 
of EA exhibits a monotonic increase with the tilt angle θ , 
consistent with the order at the initial states. This trend 
persists for tilted antiferromagnetic states even when 
γ = 1 . However, for tilted ferromagnetic initial states at 
γ = 1 , we observe a late-time QME in the EA, where the 
monotonicity is reversed, i.e. states with smaller θ now 
exhibit larger steady state EA.

Next, we explore the early- and late-time dynamics of 
charge variance under the evolution of H1 and H2 . As 
shown in Fig.  11b, for tilted antiferromagnetic states, the 
charge variance is consistently larger for states with higher 
asymmetry (large θ ) compared to those with lower asym-
metry (small θ ). However, this trend does not hold for the 
tilted ferromagnetic initial state, where the monotonic rela-
tionship of charge variance and θ is reversed at early times. 

As indicated in Fig. 11a, this leads to an early-time cross-
ing around t = 2 , which signifies the presence of QME. To 
quantitatively analyze the early-time dynamics, we expand 
the charge variance up to the second order in t as

where the linear term in t vanishes. Here, 
d2σ 2

Q

dt2

∣

∣

∣

∣

0

 repre-

sents the second derivative of the charge variance evalu-
ated at t = 0 . The initial state is chosen as a tilted 
ferromagnetic state. Using the Heisenberg equation of 
motion, the second derivative of the charge variance at 
t = 0 can be expressed as:

(7)σ 2
Q(t) ≈ σ 2

Q(0)+
t2

2

d2σ 2
Q

dt2

∣

∣

∣

∣

∣

0

,

(8)

d2σ 2
Q

dt2

∣

∣

∣

∣

∣

0

= −�[H , [H ,Q2]]�0 + 2�Q�0�[H , [H ,Q]]�0,

Fig. 9  EA as a function of time with (a) ferromagnetic and (b) antiferromagnetic states for different values of γ under H1 with L = 12 . The insets 
show the peak of EA at different values of γ . From bottom to top: γ = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 . Panels c and d show the peak value of EA, 
(�SL/3)max , and the ratio of the late-time EA, �S∞L/3 , to (�SL/3)max as a function of 1− γ for various initial states under H1 . GS denotes the value of EA 
calculated from the ground state of H1
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where H is the Hamiltonian of the system, taken here 
as H1 . The notation �·�0 denotes the expectation value 
with respect to the initial state. Without presenting the 
full derivation, we state that the second derivative of the 
charge variance at t = 0 is given by:

The early-time growth of the charge variance for differ-
ent values of θ is then approximated by

(9)

d2σ 2
Q

dt2

∣

∣

∣

∣

∣

0

=L(1− γ )2 + 3L(1− γ ) sin2 θ cos2 θ

−3�L(1− γ ) sin2 θ cos2 θ

+�L(1− γ ) sin2 θ − L(1− γ ) sin2 θ .

(10)σ 2
Q(t)

L
= sin2 θ + t2

2
(1− γ )

[

(1− γ )+ (1−�)

(

3 sin2 θ cos2 θ − sin2 θ
)]

.

Here, the initial charge variance, σ 2
Q(0) , is replaced 

with L(1− cos2 θ) . The QME observed in the charge 
variance for the tilted ferromagnetic state at early 
times arises from the t2 coefficient in Eq.  (10), which 
governs the initial CV dynamics. This term drives 
a crossing between states with different symmetry-
breaking effects. For small tilt angles ( θ → 0 ), the 
CV initially grows concavely, characterized by a posi-
tive second time derivative, 

d2σ 2
Q

dt2
> 0 . In contrast, 

as θ approaches π/2 , the second derivative becomes 
negative (for suitable values of γ  and � ), resulting in 
a convex decay of the CV at early times. This qualita-
tive difference in dynamical behavior—concave versus 

Fig. 10  Early-time EA dynamics for (a) tilted ferromagnetic states and (b) tilted antiferromagnetic states with varying γ . The blue curves correspond 
to θ = 0.2π , and the red curves represent θ = 0.5π . Late-time EA, �S∞L/4 , as a function of 1− γ for (c) tilted ferromagnetic states and (d) tilted 
antiferromagnetic states. All calculations are based on H1 with L = 12
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convex dynamics—underlies the emergence of the 
QME in the charge variance.

Since the charge variance provides a quantitative meas-
ure of the spreading of charge across different sectors Q, we 
analyze the time evolution of the probability distribution 
PQ for the state |ψ(t)� , initialized in tilted ferromagnetic 
states. The probability distribution within each sector is 
defined as:

where |ψq� denotes the complete set of charge eigen-
states with charge q. Figure 12 reveals distinct dynamical 
behavior for different initial conditions: more asymmet-
ric states (larger θ ) exhibit a progressive narrowing of the 
charge distribution, resulting in suppressed charge vari-
ance. Conversely, weakly asymmetric initial states lead 
to significant broadening of PQ(t) across multiple charge 

(11)PQ(t) =
∑

q=Q

|�ψ(t)|ψq�|2,

sectors, thereby enhancing the charge variance. This 
contrasting behavior directly explains the emergence 
of QME in the early-time charge variance dynamics. To 
study the late-time behavior, we numerically compute the 
long-time CV, σ 2

Q∞ , by averaging over 2000 time points 
between t1 and t2 . As illustrated in Fig.  11d, the charge 
variance for the antiferromagnetic state retains a mono-
tonic dependence on θ at late times. However, for the 
tilted ferromagnetic state under non-symmetric evolu-
tion, the early-time QME in the CV persists into the late-
time regime, indicating an odd number of crossings for 
CV curves of different θ during the dynamics.

In Table  2, we summarize the early- and late-time 
behavior of EA and CV for different initial states under 
evolution governed by the non-symmetric Hamilto-
nian. Moreover, the results obtained from the non-inte-
grable Hamiltonian H2 remain qualitatively consistent 
with those of H1 . The contrasting behaviors of EA and 

Fig. 11  Early-time CV dynamics for (a) tilted ferromagnetic states and (b) tilted antiferromagnetic states at γ = 0.7 . Curves of different colors 
correspond to different values of θ . Late-time CV, σ 2

Q∞ , as a function of 1− γ for (c) tilted ferromagnetic states and (d) tilted antiferromagnetic 
states. All calculations are performed using the Hamiltonian H1 with L = 12
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CV highlight their complementary roles in character-
izing the strength and patterns of symmetry breaking.

5 � Open questions and future directions
In this review, we systematically investigate the dynamics 
of subsystem symmetry breaking and restoration, exam-
ining the evolution of both symmetric and asymmetric 
initial states under symmetric and symmetry-broken 
Hamiltonians or random circuits. Our results demon-
strate that persistent symmetry breaking within the sub-
system occurs exclusively when the dynamics are driven 
by a non-symmetric Hamiltonian. This enduring asym-
metry manifests in the long-time behavior of the system, 
as diagnosed by a non-vanishing entanglement asym-
metry. We further uncover distinct manifestations of 
the quantum Mpemba effect across different measures: 
(1) The entanglement asymmetry version arises under 

symmetric evolution and remains robust against weak 
symmetry-breaking perturbations, while (2) the charge 
variance version emerges only in non-symmetric Hamil-
tonian dynamics. Despite these observations, several fun-
damental questions remain rarely explored, presenting 
key opportunities for future research.

One of the fundamental challenges lies in determin-
ing whether discoveries about the quantum Mpemba 
effect could provide a deeper understanding of its clas-
sical version. Investigating how classical and quantum 
relaxation dynamics share similarities might reveal a uni-
fied description of anomalous thermalization, connecting 
these seemingly distinct phenomena.

Our previous study [76] introduces two symmetry-
breaking protocols for Hamiltonian and random circuit 
dynamics. This naturally leads to an important open 
question: how universal is the quantum Mpemba effect 

Fig. 12  Time evolution of the probability distribution, PQ , for each charge sector Q under the Hamiltonian H1 with γ = 0.6 . The charge sectors range 
from Q = −12 to Q = 12 in increments of 2. The rows, from top to bottom, correspond to time points t = 0 , 0.75, 1.5, and 3. Two columns, from left 
to right, represent different tilted ferromagnetic states with θ = 0.2π and 0.5π

Table 2  The early- and late-time behavior of EA and CV under the evolution of H1 or H2 ( 0.5 ≤ γ ≤ 1 ). Crossing in EA (CV) means when 
the time-evolution curves of EA (CV) for states with larger θ intersect with those for smaller θ at early times. The right-up (right-down) 
arrow indicates that the late-time value is increasing (decreasing) with increasing tilted angle θ

Ferromagnetic Domain wall Antiferromagnetic

EA (early time) Crossing for small 1− γ Crossing for small 1− γ Crossing for small 1− γ

CV (early time) Crossing for γ  = 1 No crossing No crossing

EA (late time)  ↗  ↗  ↗
CV (late time)  ↘  ↗  ↗
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when subjected to diverse symmetry-breaking pertur-
bations? For example, do non-Abelian symmetries, dis-
crete symmetries, and alternative symmetry-breaking 
mechanisms (boundary impurity [126], time-dependent 
perturbations) exhibit anomalous relaxation dynamics? 
A comprehensive investigation of the effect’s robustness 
across different symmetry-breaking scenarios could yield 
new insights into non-equilibrium dynamics.

Beyond its standalone significance, the QME may 
have deep connections to other anomalous dynamics in 
quantum many-body systems. For example, how does 
the QME relate to other anomalous dynamical phenom-
ena, such as dynamical phase transitions [127, 128], pre-
thermalization [129, 130], the Kibble-Zurek mechanism 
[131–134], discrete time crystal [135, 136]? Are there 
common underlying principles or can these phenomena 
influence each other?

Furthermore, another essential direction for future 
research is understanding how the QME manifests across 
a broader range of quantum systems. This includes exam-
ining its behavior in systems with long-range interac-
tions, higher spatial dimensions, Floquet and annealing 
protocols (as opposed to quench dynamics). Such stud-
ies could reveal whether the QME is a generic feature of 
non-equilibrium quantum systems or if its emergence 
depends critically on specific conditions.

Finally, the quantum Mpemba effect offers practical 
advantages in fast non-adiabatic state preparation. Unlike 
slow adiabatic cooling, it provides a shortcut to the tar-
gets, even from highly non-equilibrium conditions. This 
could revolutionize quantum control by enabling faster 
quantum state preparation in the context of quantum 
simulation and information processing.

Despite significant progress in studying the Mpemba 
effect across various systems, many mysteries remain 
unresolved. From deep theoretical puzzles to real-world 
applications, further research could uncover exciting 
breakthroughs. The ongoing investigation of this phe-
nomenon may lead to surprising insights and innovative 
technologies in the future
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