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Abstract

Non-equilibrium dynamics have become a central research focus, exemplified by the counterintuitive Mpemba effect
where initially hotter systems can cool faster than colder ones. Studied extensively in both classical and quantum
regimes, this phenomenon reveals diverse and complex behaviors across different systems. This review provides

a concise overview of the quantum Mpemba effect (QME), specifically emphasizing its connection to symmetry
breaking and restoration in closed quantum many-body systems. We begin by outlining the classical Mpemba effect
and its quantum counterparts, summarizing key findings. Subsequently, we introduce entanglement asymmetry

and charge variance as key metrics for probing the QME from symmetry perspectives. Leveraging these tools, we ana-
lyze the early- and late-time dynamics of these quantities under Hamiltonian evolution and random unitary circuits.
We conclude by discussing significant challenges and promising avenues for future research.

1 Introduction

The Mpemba effect is a fascinating and counterintui-
tive phenomenon in which a hotter system can freeze
faster than a cooler one under identical conditions. The
phenomenon was notably brought to modern scientific
attention in the 1960s by a student who observed that
hot ice cream mixture froze quicker than a colder one
[1]. The effect defies the conventional thermodynamics
expectations, which suggest that a hotter system should
always take longer to cool to a given temperature than
a colder one. Such effects have been debated for centu-
ries, with historical accounts [2—4] dating back to ancient
times, and it continues to intrigue scientists due to its
complex and elusive nature [5, 6].

In classical systems, the Mpemba effect has been
observed in a variety of contexts, each offering unique
insights into its underlying mechanisms. One promi-
nent example is supercooling [7, 8], where a substance
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is cooled below its freezing point without undergo-
ing solidification. In such cases, the system may remain
trapped in a metastable phase for an extended period
before abruptly transitioning to the equilibrium state.
Beyond supercooling, the effect has also been studied in
granular fluids [9], where the interplay between particle
interactions and energy dissipation can lead to anoma-
lous cooling behaviors. Similarly, in clathrate hydrate [10]
and carbon nanotube resonators [11], unexpected cool-
ing patterns have been reported. Moreover, the Mpemba
effect has been experimentally observed in classical
Markovian systems, where stochastic system-bath inter-
actions drive the anomalous relaxation dynamics [12, 13].
Theoretical studies have identified distinct mechanisms
behind this phenomenon: Ref. [14] shows that the effect
arises when a hotter initial state has substantially smaller
overlap with the system’s slowest-decaying eigenmodes
compared to a colder state, enabling faster equilibration.
In Ref. [15], the authors introduce the strong Mpemba
effect, where relaxation is exponentially accelerated for
specific initial temperatures. This effect is characterized
by the Mpemba index, an integer that counts the num-
ber of such special initial temperatures. Notably, the par-
ity of the index (odd or even) is a topological invariant of
the system, ensuring robustness against small parameter
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variations. They demonstrate that this effect persists even
in the thermodynamic limit and is closely linked to ther-
mal overshooting—a phenomenon in which the tempera-
ture of the relaxing system exhibits non-monotonic decay
over time. Despite these diverse observations, a uni-
versally accepted explanation for the classical Mpemba
effect is still absent, with proposed mechanisms ranging
from differences in thermal conductivity and evaporation
rates to more intricate considerations of non-equilibrium
dynamics. This phenomenon continues to be an active
area of research within the scientific community [16—29].

In recent years, the focus of the Mpemba effect has
expanded beyond classical physics, extending into the
intriguing realm of quantum systems, which are gov-
erned by the principles of quantum mechanics. In quan-
tum regimes, the Mpemba effect can manifest in two
distinct ways: through open quantum systems that inter-
act with an external environment or through isolated
quantum systems that evolve under unitary dynam-
ics. Ref. [30] explores the Mpemba effect in open quan-
tum systems using a quantum Ising model coupled to a
thermal bath, revealing that metastable phases enable
Mpemba-like behavior. Despite initial temperature dif-
ferences, the hotter system reached equilibrium faster
after a thermal quench, showing transient magnetiza-
tion dynamics governed by Lindblad evolution. This
confirms that quantum effects preserve rather than dis-
rupt the Mpemba phenomenon in supercooled systems.
Given the prevalence of the Mpemba effect in classical
Markovian systems, a natural question arises: Can this
phenomenon also occur in open quantum Markovian
systems? In Markovian systems described by Lindblad
dynamics, researchers discovered that a unitary rotation
can suppress the slowest-decaying eigenmode, leading to
exponentially accelerated relaxation—a signature of the
strong Mpembea effect [31]. Ref. [32] presents a protocol
for generating the strong Mpemba effect by implement-
ing precisely controlled rotational operations on a single
trapped ion initialized in its ground state. However, faster
relaxation alone does not guarantee the Mpemba effect;
the system must also start sufficiently far from equilib-
rium, as shown through free-energy analysis of specially
prepared initial states [33]. Variants like the inverse
Mpemba effect (where a colder system heats up faster)
using a single trapped ion qubit, provide experimental
evidence of this phenomenon in a quantum system [34],
while mixed versions of Mpemba effect, where relaxation
speed depends on both thermal and non-thermal effects,
appear in quantum dots due to intermediate relaxation
modes [35]. Non-Hermitian systems exhibit even richer
relaxation dynamics, with multiple observable cross-
ings—such as ground-state energy, entropy, and distance
to the steady state—emerging during thermalization [36].
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Recent studies [37-48] have extensively investigated the
Mpemba effect in other open Markovian quantum sys-
tems, analyzing its emergence under different conditions.
Beyond Markovian regimes, non-Markovian dynam-
ics introduce new possibilities like the extreme quan-
tum Mpemba effect [49], where systems exploit memory
effects to achieve ultra-fast equilibration. Ref. [50] devel-
ops a non-Markovian exact master equation to study
quantum system dynamics, revealing how memory
effects and system-bath correlations lead to deviations
from standard Markovian relaxation.

The quantum Mpemba effect (QME) [51] reveals a
remarkable non-equilibrium phenomenon in isolated
quantum systems: symmetry restoration occurs faster in
states that initially exhibit stronger symmetry breaking.
This closed-system manifestation of QME is especially
intriguing because relaxation dynamics are governed by
intrinsic quantum fluctuations, unlike in open quantum
systems, where environmental dissipation typically domi-
nates. This effect emerges following a global quantum
quench, where the system is prepared in a pure, non-
equilibrium state and evolves under unitary dynamics.
Recent studies have reported the QME in both integra-
ble and chaotic quantum systems [52-54], with notable
examples including the rapid restoration of U(1) sym-
metry when quenching from highly asymmetric initial
states under a U(1)-symmetric Hamiltonian [55-65].
These findings have since been extended to various other
settings. Notably, Refs. [66—69] explore dynamical sym-
metry restoration and non-equilibrium quantum dynam-
ics in one-dimensional spin chains, with particular focus
on phenomena like the QME and the role of integrabil-
ity. The QME has also been discovered in strongly dis-
ordered, many-body localized systems (MBL) [70]. This
study extends the understanding of anomalous thermali-
zation dynamics to disordered, non-ergodic systems,
revealing how MBL alters the interplay between symme-
try and relaxation. The imaginary-time QME [71], where
certain initial states converge faster to the ground state
under imaginary-time evolution compared to others,
has been reported in various physical systems. Ref. [72]
reveals that the QME can even be realized in non-Hermi-
tian systems. Recent studies [73, 74] have extended inves-
tigations of anomalous relaxation to random quantum
circuits, revealing universal dynamical features like sym-
metry restoration and characteristic relaxation scaling.
Furthermore, Ref. [75] identifies a measurement-induced
QME in monitored quantum systems. Additionally,
Refs. [76, 77] systematically examine the QME under
non-integrable Hamiltonian evolution. Extensions to
higher-dimensional systems have also revealed new
insights into entanglement propagation and thermaliza-
tion [78, 79]. A microscopic mechanism for the QME in
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generic integrable systems has been proposed, linking it
to quasiparticle excitations [80]. Furthermore, the QME
has been experimentally demonstrated in trapped-ion
quantum simulators [81]. Remarkably, this effect per-
sists even in the presence of experimental imperfections
like noise and disorder. This experimental realization
provides crucial insights: when symmetry restoration is
driven purely by environmental decoherence, no QME
crossings occur, establishing that intrinsic quantum fluc-
tuations are essential for the effect. In this review, we
examine the QME through the lens of symmetry break-
ing and restoration, highlighting its manifestation in both
Hamiltonian and random circuit dynamics. Our discus-
sion underscores the QME’s significance in advancing the
understanding of non-equilibrium quantum dynamics.

The remainder of this review is structured as follows.
In Section 2, we introduce two complementary diag-
nostic measures—entanglement asymmetry and charge
variance—to systematically quantify how far a system
deviates from equilibrium. Section 3 investigates the
emergence of the QME in scenarios where subsystem
symmetry is restored at late times. In Section 4, we
explore the robustness of the QME when subsystem’s
symmetry remains broken at late times. Finally, Section 5
concludes by outlining key unsolved questions and prom-
ising future directions in the study of non-equilibrium
quantum phenomena.

2 The metrics

Many potential candidates exist to quantify the dis-
tance of a system to its equilibrium state, but three have
been particularly prominent in the study of quantum
dynamics. The quantum relative entropy, defined as
S(p (D) peg) = Tr[p(t)(log p(t) — log peq)], compares the
time-evolved density matrix p(¢) with the steady-state
equilibrium pe, and is closely tied to non-equilibrium free
energy. It has been utilized in investigations of the QME
[33, 35]. Another key measure, the trace distance, defined
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Fig. 1 The reduced density matrix of subsystem A, denoted as p4, and its symmetry-projected counterpart, pa o, are illustrated in the definition
of entanglement asymmetry. Each blue block corresponds to a specific U(1) symmetry sector with a fixed charge Q. In pg, the light green
background highlights off-diagonal matrix elements between different charge sectors. In contrast, pa g (white background) contains

no off-diagonal elements between different Q sectors
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as dr(p(t)) = %Tr«/A*A, where A = p(t) — peg, is par-
ticularly useful due to its monotonic decay under Marko-
vian dynamics. This property has enabled experimental
studies of strong and inverse QMEs [32, 34]. In contrast,
the Frobenius distance, defined as dr(p(¥)) = v TrA'A,
offers a simpler computational alternative to the trace
distance, though it lacks monotonicity in Markovian sys-
tems [31].

While these measures offer different insights into
equilibration, recent work suggests that entanglement
asymmetry is a practical, easy-to-measure proxy for the
distance to an equilibrium state. This measure originates
from the study of entanglement properties in quantum
many-body systems and has been widely employed to
quantify symmetry breaking in both quantum field theo-
ries [82-84] and out-of-equilibrium many-body systems
[66, 73, 80]. To define this quantity, we typically partition
the entire system into a subsystem A and its complement
A. The reduced density matrix for subsystem A, denoted
as pa, is obtained by tracing out the degrees of freedom
in A, expressed as pg = Trz(p). Here, p represents the
density matrix for the entire system. The entanglement
asymmetry (EA) [52] is defined as:

AS) = §"(pa,Q) — S"(pa), 1)

where S§"(p) = ﬁ log Tr(p”) is the wn-th Rényi
entropy. In the limit # — 1, the Rényi entropy reduces
to the Von Neumann entanglement entropy, given by
S(p) = =Tr(p log p). Here, pa,q = quz I, 0411, where
Qa =) ;cq 0f in case of U(1) symmetry and I, is the
projector onto eigenspace of Q4 with charge 4. Conse-
quently, p4,q is block diagonal in the eigenbasis of Qa. A
schematic representation of p4 and py g is illustrated in
Fig. 1. The EA satisfies two key properties: (1) AS4 > 0
since the EA is defined as the relative entropy between
pa,q and p4. (2) AS4 = 0if and only if pg,9 = pa. There-
fore, EA quantifies the degree of symmetry breaking in
subsystem A by measuring the distinguishability between
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the reduced density matrix p4 and its symmetry-pro-
jected counterpart p4 Q. Note that the symmetry for sub-
system mixed states investigated here corresponds to the
concept of weak symmetry in Refs. [85, 86].

In the experimental implementation, EA is measured
by determining the S”(p4,0) of the subsystem state. The
first method [81] involved obtaining the subsystem den-
sity matrix p4 via quantum state tomography, leverag-
ing the classical shadow framework [87]. The required
block-diagonal state p4,o was then computed numerically
from p4 via projection. An alternative protocol prepares
the required block-diagonal state p4,q by applying local
random unitary gates U that preserve the symmetry
structure. This operation effectively dephases the sub-
system by decohering the off-block-diagonal elements of
the density matrix, directly yielding a state on quantum
hardware in the desired block-diagonal form p4,. The
entropy S”(p4,q) of this prepared state was then meas-
ured using randomized measurements [88] on the sub-
system. Both protocols exhibit an inherent exponential
complexity with respect to the subsystem size for general
states.

In parallel with the EA analysis, we also compute the
charge variance (CV), defined as

A~

og = Q) —(Q)?% @

where Q = Zle of represents the total charge opera-
tor for a system of size L and the expectation value (Q)
is defined as (Q) = Tr(p@). If the expectation value (-)
is taken with respect to a U(1l)-symmetric state where
the state resides entirely within a single charge sector,
then O'é = 0. Conversely, if the state’s charge distribu-
tion spans multiple sectors, the charge variance becomes
nonzero. CV can be measured directly on the computa-
tional basis, which is simpler than EA measurement pro-
tocols discussed above.

The quantum Mpemba effect describes a scenario
where a system initially “further” from a target state
(e.g., hotter, or with more pronounced symmetry break-
ing) can reach it faster than a system that started “closer”.
More formally, consider two identical quantum systems
prepared in distinct initial states, described by density
matrices p1(0) and p3(0). Let O(¢) be a relevant physical
observable characterizing the system’s proximity to equi-
librium or a symmetric state. If, without loss of generality,
0O(p1(0)) > O(p2(0)), the QME is said to occur if there
exists a characteristic time tqume such that this inequality
inverts for subsequent times, i.e., O(p;1(¢)) < O(pa(2)) for
t > tQME.

This general definition applies to various metrics.
For instance, when using entanglement asymme-
try, if AS"(p1(0)) > AS"(p2(0)), namely state p;(0)
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exhibits stronger initial symmetry breaking than 02(0),
the QME manifests when the system evolving from
01(0) achieves a lower EA value at later times, i.e,
AS"(p1(2)) < AS"(p2(¢)) for t > tqme. Similarly, for
charge variance, if initially oé(,ol 0)) > oé(pZ(O)), the
QME in CV occurs when 05(,01 @) < 05(,02(1’)) for
t > LQME.

The crossing timescale tqme depends on the initial
states, the specific observable, and the underlying physi-
cal model. In many contexts, such as EA dynamics during
symmetry restoration in chaotic systems, this crossing
occurs at relatively early times, potentially on the order of
the subsystem size. Furthermore, by comparing the initial
ordering of the observable with its ordering in the late-
time steady state, one can infer the parity of the num-
ber of crossings: if the initial order O(p;1(0)) > O(p2(0))
inverts to O(p1(t — 00)) < O(p2(t — 00)), then for con-
tinuous evolution, an odd number of crossings (at least
one for QME) must occur. Conversely, if the initial order
is preserved at late times, an even number (could be zero)
of crossings is implied.

3 Symmetry restoration dynamics
3.1 U(1)-asymmetric initial states with U(1)-symmetric
random circuit
The random circuit [89-93], depicted in Fig. 2, is con-
structed from two-qubit random U(1)-symmetric gates
and random Haar gates, arranged in a brick-wall pat-
tern. The U(1)-symmetric gates are designed to preserve
the charge sector, with their matrix form explicitly illus-
trated in Fig. 2. Each block within these gates is randomly
drawn from the Haar measure [94—96]. Importantly, due
to the U(1)-symmetric nature of these gates, there are
no matrix elements connecting different charge sectors,
which enforces the conservation of charge within each
sector. The degree of symmetry breaking is governed by
the doping probability PHaar, which sets the probability of
replacing a U(1)-symmetric gate with a random Haar gate
at any given site. The fully symmetric case, Paar = 0,
corresponds to a U(1)-symmetric random circuit.

The time evolution of the circuit is discretized, with
each time step corresponding to the application of two
consecutive layers of gates. The unitary operator U gov-
erning the evolution between two consecutive time steps
tand ¢ + 1is defined as:

U= U Up-1,1-2..U3)Upr1Up—21-3...U12)
3)
where the second (first) bracket represents the operations
applied in the first (second) layer of the time step. Here,
U, i+1 denotes either a U(1)-symmetric gate or a random
Haar gate acting between qubits i and i + 1. The state
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Fig. 2 Schematic illustration of a 6-qubit non-symmetric random circuit with periodic boundary conditions. Gates are arranged in the even-odd
brick-wall pattern. The blue and red rectangles represent U(1)-symmetric and random Haar gates, respectively. The basis for the U(1)-symmetric gate

is listed in the following order:|00),|01),|10)and |11)

| (t + 1)) at time ¢ + 1 is updated from the state [ (¢))
through the action of the unitary operator U as:

¥+ 1) =Uly@). (4)

This process is iterated to evolve the state over mul-
tiple time steps. And E[AS%] is computed by averaging
AS’ over different circuit configurations. In the following
study, we consider three initial states: the ferromagnetic
state |000...0), the antiferromagnetic state |0101..01) and
the domain-wall state |000..111), where the domain wall
is positioned at the center of the chain. To incorporate
the effect of symmetry breaking in the initial state, we
introduce tilted ferromagnetic states defined as:

[¥i(0)) = Y 7 1000...0), (5)

where ij is the Pauli-y matrix acting on the j-th qubit,
and 6 is a tuning parameter that controls the strength
of symmetry breaking in the initial state. When 6 =0,
Eq. (5) is U(1)-symmetric, resulting in a vanishing EA. As
0 increases, the EA grows, reaching its maximum value at
0 = /2. The tilted antiferromagnetic and tilted domain
wall states are constructed in a similar manner.

As shown in Fig. 3a, the early-time QME emerges in
the U(1)-symmetric random circuit for tilted ferromag-
netic states: states with stronger initial asymmetry (larger
EA) decay faster than those with weaker asymmetry.
This behavior originates from the distinct thermalization
rates across different charge sectors. Specifically, states
with greater overlap in the Q4 = 0 sector thermalize
more slowly due to the restricted Hilbert space dimen-
sion (dim = 1). For instance, the 6 = 0.2z state decays

slowest because it dominantly populates Q4 = 0. The
QME similarly appears for tilted domain wall states, fol-
lowing the same mechanism. However, tilted antiferro-
magnetic states display no QME signature, as states with
increasing tilt angle 6 have larger overlap with smaller
charge sectors. In contrast, Fig. 3b shows that the QME
vanishes when the circuit comprises only random Haar
gates, as no well-defined charge sectors exist in this case.
We further investigate the results of other symmetry
groups [53]. The absence of QME persists in Zp-symmet-
ric circuits due to the fact that the Hilbert space dimen-
sions associated with the two parity sectors Q4 = 1 and
Q4 = —1 are exactly equal. However, we observe that
QME re-emerges in SU(2)-symmetric circuits due to the
varying sizes of symmetric sectors.

3.2 U(1)-symmetric (asymmetric) initial states with U(1)
non-symmetric random circuit
We now investigate the early-time dynamics of entan-
glement asymmetry in U(1) non-symmetric random cir-
cuit, where symmetry-breaking effects are introduced
via random Haar gates. The unitary evolution operator U
(defined in Eq. (3)) is thus modified by substituting a frac-
tion of U(1)-symmetric gates with random Haar gates,
while the state |y (¢)) still updates according to Eq. (4).
We begin by studying the early-time EA dynam-
ics of a U(1)-symmetric initial state evolving under a
U(1) non-symmetric random circuit. The circuit under
investigation consists of 16 qubits. We evaluate the EA
at different doping probabilities of random Haar gates,
using an antiferromagnetic initial state. Despite the
absence of QME in early-time dynamics, all EAs show



Yu et al. AAPPS Bulletin

(2025) 35:17

Page 6 of 18

4 6

t

Fig. 3 Panels (a) and (b) show the EA dynamics of subsystem A = [0, N/4]for random quantum circuits with Praar = 0 and Phaar = 1, respectively.
The system sizeisN = 16 and N = 8in (a) and (b), respectively. The inset of (a) shows the overlaps of pa with different charge sectors ranging
from {0, ...,N/4}. The QME is observed in U(1)-symmetric random circuits while it is absent in random circuits without any symmetry. Figure

reprinted from Ref. [53]

nontrivial overshooting at some early time steps, char-
acterized by a peak in EA that significantly exceeds its
late-time saturation value. For all probabilities chosen
in Fig. 4a, all EAs reach their maximum after only a
few layers of unitaries. The rate of symmetry restora-
tion also depends on the initial state: for antiferromag-
netic or domain wall states, symmetry is restored faster
than for ferromagnetic states. This difference arises due
to the larger Hilbert space sector of the initial states in
the former cases. Furthermore, Fig. 4b reveals that the
peak of the circuit-averaged EA, E[AS /4]max follows a
power-law with respect to P, across all initial states

Phaar = 0.004
1 O ] == Phaar=0.01
—_— #= Praar=0.03
S == Pl =0.06
LE‘ === Phaar=0.2
< O 5 =—#= Plaar=0.4
E’ ' == Plaar =0.6

10

0 5
t

investigated. This scaling behavior, however, appears to
hold only for small Phaar < 0.1.

Next, we examine the evolution of EA for initial states
tilted by an angle 6. By systematically varying the param-
eters such as P,y and the initial state |14 (0)), we explore
the conditions under which the QME emerges. As shown
in Fig. 5, we compute the EA for both U(1) symmetry
with Q4 = > iea 0f and Z symmetry with Qs = [Licaof
for U(1)-asymmetric initial states, i.e. a tilted ferromag-
netic state. As depicted in Fig. 5a, for PHaar =0, we
clearly notice the emergence of QME in the U(1) case.
Surprisingly, we also find that the QME appears in the

(b)

100
/.‘_.—-r"::::
-9 X
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'_|E 10_]_ - /-*/ o
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:‘ ,”’ ,”’
m //, ) -t
< ’,—.’"‘ ,”” ¢
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Fig.4 aThe circuit-averaged EA, E[AS; /4], as a function of time with the antiferromagnetic initial state at different values of Przar. b The peak value,
E[AS; /41max, as a function of Pyaar. All three curves follow a power law y = axb. F: Ferromagnetic state (@ = 1.4,b = 0.4); DW: Domain Wall state

(a = 2.7,b = 0.8); AF: Antiferromagnetic state (@ = 1.9,b = 0.9)
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Fig. 5 The circuit-averaged EA, E[AS, /4], as a function of time for different values of Praar. Blue: U(1) EA. Green: Z> EA. A larger 6 corresponds
to a stronger initial symmetry breaking in the system’s state. Panels a—d correspond to different values of Praar @ Praar = 0, b Phaar = 0.3, €

Phaar = 0.7,and d Paar = 1, respectively

Z, probe, which does not contradict the previous study
[53] suggesting the absence of QME in Zj-symmetric
circuits. Even though U(1)-symmetric gates are also Zj
symmetric, there is no off-diagonal coupling between
sectors |00) and |11), leading to different thermalization
rates between two Z, charge sectors (Q4 = £1), and thus
resulting in QME.

As we replace a portion of U(1)-symmetric gates with
random Haar gates, QME remains evident even with a
finite number of random Haar gates. However, when the
circuit consists entirely of random Haar gates, all charge
sectors thermalize at the same rate after circuit averaging,
and QME disappears. Additionally, initial information,
such as the dependence on different 6-values, is erased
after applying just one layer of Haar gates. Furthermore,
we identify one general property in Fig. 5. For the same
6 and Piyaar, the Zy EA is consistently smaller than U(1)
EA. This is because the Z; charge sectors consist of only
two sub-blocks, whereas the U(1) sectors involve smaller
blocks.

Additionally, we study the early-time EA dynamics
for both a tilted domain wall and a tilted antiferromag-
netic state. Our findings reveal that QME is present in
the tilted domain wall state when Pyaar is less than 1.
For all three initial states under consideration, the EA
curves corresponding to different values of the tilt angle 6

converge after the application of a single layer of random
Haar gates when Pi,ar = 1, indicating the disappearance
of QME.

In parallel with the EA analysis, we also compute the
early-time dynamics of charge variance. As illustrated in
Fig. 6, CV for initial states exhibiting a stronger symme-
try-breaking effect (large 6) stabilize much more rapidly
than for states with a weaker symmetry-breaking effect,
consistently across all initial conditions. Consequently,
the early-time dynamics of CV reveal no indication of
QME in this context. In all the scenarios considered
above, we observe that late-time EAs approach zero,
irrespective of whether the random circuit exhibits
U(1) symmetry or not. This behavior can be understood
through the lens of quantum thermalization and infor-
mation scrambling [97-100]. Specifically, for random
circuit dynamics, the reduced density matrix of the sub-
system converges to a fully mixed state, as long as the
subsystem size does not exceed half of the total system
size. Similarly, the late-time CV for different initial states
also approaches the same saturating value.

In Table 1, we provide a summary of the behavior of
entanglement asymmetry and charge variance at early
and late times for U(1)-asymmetric states in the circuit
model. The quantum Mpemba effect occurs only in the
early-time dynamics of entanglement asymmetry for tilted
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Fig. 6 Dynamics of circuit averaged CV,IE[U%], for different U(1)-asymmetric initial states in U(1) non-symmetric random circuit for Pyaar = 0.05.The
left, middle, and right panels correspond to tilted ferromagnetic, tilted domain wall, and tilted antiferromagnetic initial states, respectively

Table 1 The early- and late-time behavior of entanglement
asymmetry (EA) and charge variance (CV) under the evolution

of random circuits with 0 < Pyaar < 1. Crossing in EA (CV) means
when the time-evolution curves of EA (CV) for states with larger
6 intersect with those for smaller 6 at early times. The constant C
independent of 6 can be evaluated as Tr(pQ?) — Tr(pQ)?, where

p = - is the late-time density matrix for the subsystem and /is an
2L x 2tidentity matrix

Ferromagnetic Domainwall Antiferromagnetic
EA (early time)  Crossing Crossing No crossing
CV (early time) ~ No crossing No crossing No crossing
EA (late time) 0 0 0
CV (late time) ~ C C C

ferromagnetic and tilted domain wall states. Moreover, the
entanglement asymmetry and charge variance approach
distinct values, which are universal across all initial states,
at late times.

3.3 U(1)-asymmetric initial states with U(1) symmetric
Hamiltonian

In Hamiltonian dynamics, the initial state |1 (0)) under-

goes unitary evolution, leading to the time-evolved state

e 1t |4 (0)). The Hamiltonian H governing this evolution

is defined as:

Ly
— y_y
H=— 2 Z [ofaﬁ_l +yoiol, + Aajzoﬁi_l}
j=1
L (6)

2

X X y_y zZ,.z
> ["/ %12+ 07 0j + A2 "/+2}’
j=1

_L
4

where A and Aj are the coefficients for nearest-neighbor
and next-nearest-neighbor interactions, respectively.
The term Aj introduces non-integrability into the sys-
tem, while y controls the strength of anisotropy, breaking
the system’s (1) symmetry when y # 1. Here, we focus
on the isotropic case (y = 1), where the U(1) symmetry

associated with spin conservation along the z-axis is pre-
served. Open boundary condition requires L1 =L —1
and Ly =L — 2. In contrast, periodic boundary condi-
tions enforce L1 = Ly = L with ofﬂ =ofand ogﬂ =oy
fora =x,y,z

Figure 7 shows the time evolution of entanglement
asymmetry for both integrable and non-integrable
Hamiltonians under open and periodic boundary con-
ditions. We observe that initial states with higher
asymmetry (0 = 1.5) relax faster than those with less
asymmetry (6 =1) in all cases, demonstrating the
emergence of QME and its broad relevance. However,
a fundamental question arises: What is the microscopic
origin of QME? An explanation has been provided for
one-dimensional integrable quantum systems. Integra-
ble quantum systems possess infinitely many conserved
quantities, leading to unique non-equilibrium dynam-
ics governed by quasiparticle excitations [101-103].
These excitations become the essential ingredient to
explain the QME. In a quantum quench, the initial state
acts as a source of quasiparticle pairs emitted homoge-
neously, propagating at fixed velocities. As illustrated in
Fig. 8, entangled pairs from the same point spread cor-
relations, while their separation reduces entanglement
asymmetry in a subsystem A. When one quasiparticle
leaves A, its contribution to EA vanishes, leading to
symmetry restoration. The QME emerges from two key
factors: (1) more asymmetric initial states contain more
symmetry-breaking quasiparticle pairs, and (2) these
pairs propagate at state-dependent velocities. When
the dominant symmetry-breaking pairs in a highly
asymmetric state happen to be faster, they exit A more
quickly, causing faster EA decay. This explains why
greater initial asymmetry can lead to faster relaxation.
The exact conditions for QME depend only on the ini-
tial quasiparticle density and their velocities—quanti-
ties computable via Bethe Ansatz for generic integrable
systems [80]. In terms of generic non-integrable cha-
otic systems, the mechanism for understanding QME is
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Fig. 7 The time evolution of the entanglement asymmetry AS4 is studied for different tilted ferromagnetic states with system size L = 10. Panels (a)
and (b) correspond to an integrable Hamiltonian with J, = 0 under periodic boundary conditions (PBC). In contrast, panels c and d depict results
for a non-integrable Hamiltonian with J, = 1, examining both periodic and open boundary conditions (OBC). Figure reprinted from Ref. [52]
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Fig. 8 Quasi-particle interpretation of entanglement asymmetry. The system is partitioned into subsystem A and its complement A. Entangled
quasi-particle pairs with opposite momentum are emitted throughout the system. Only quasi-particles within A contribute to the entanglement
asymmetry (solid blue lines). Those that leave A or reside entirely in A (dashed blue lines) make no contribution to the EA. Figure reprinted

from Ref. [51]

similar to what we discussed in symmetric circuit cases The late-time EA in this case shows two distinct
where relaxation speeds are different for symmetry sec-  behaviors in the thermodynamic limit, depending on
tors of different dimensions. the nature of the quantum system. In chaotic systems,
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EA vanishes in the thermodynamic limit. This behav-
ior stems from the thermalization properties of cha-
otic quantum systems: when a closed quantum system
evolves under a chaotic Hamiltonian, the reduced density
matrix of a small subsystem A thermalizes to the equi-
librium finite-temperature state: pg e PHa where I:IA is
the Hamiltonian of the subsystem [104-106]. Symmetry
is restored at later times for symmetric Hamiltonian H 4
since QA, p4a] = 0 where QA represents the correspond-
ing symmetry generator. In contrast, the value of steady-
state EA is not necessarily zero for integrable systems
where the late-time states are expected to be the general-
ized Gibbs ensemble [56, 60, 107-109], as identified for
tilted antiferromagnetic initial states [65].

3.4 U(1)-asymmetric initial states with U(1)-symmetric
many-body localized Hamiltonian

Symmetry restoration and QME have also been stud-
ied in MBL systems [70] which also respects the U(1)
symmetry as particle conservation. Unlike integrable
or chaotic systems, where QME depends on the initial
state, MBL phases exhibit QME universally for any tilted
product state. Notably, the timescale for QME grows
exponentially with subsystem size, reflecting the loga-
rithmic lightcone nature of MBL dynamics [110-121].
Remarkably, the subsystem symmetry fully restores in
the long-time limit, even though the steady state never
thermalizes. These findings reveal a unique mechanism
in MBL systems, distinct from thermal or integrable
regimes, where symmetry restoration and QME are pre-
sent without thermal equilibrium. The underlying mech-
anism in MBL systems can be analytically understood
via the completely diagonalized effective model for MBL
[122] and the results are qualitatively the same for both
random disorder and quasiperiodic potential induced
MBL [123-125].

4 Symmetry breaking dynamics
In this section, we focus on quench dynamics with non-
vanishing steady-state EA.

4.1 U(1)-symmetric initial states with U(1) non-symmetric
Hamiltonian

We now examine both early- and late-time dynamics of
EA and CV in non-symmetric Hamiltonians, investigat-
ing whether QME persists in this regime. The symme-
try breaking originates from the anisotropy (y # 1) in
Eq. (6). We examine two distinct Hamiltonians: (1) H;
with parameters A = 0.4, J, = 0 (2) Hy with parameters
A =04, J, =02, Ay =1 for a 12-site system. We begin
by investigating the EA dynamics when U(1)-symmetric
initial states evolve under these U(l) non-symmetric
Hamiltonians. As revealed in Fig. 9a, b, we calculate EA
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for various Hamiltonian symmetry-breaking values y and
observe that EAs also exhibit peaks at early times that are
much larger than steady values. Furthermore, the peak
value of the EA, (AS7/3)max, is found to be correlated
with the strength of symmetry breaking, 1 — y, for differ-
ent symmetric initial states as shown in Fig. 9c where EA
of the ground state of H; follows the same trend. Nota-
bly, the peak heights nearly coincide between the ferro-
magnetic and domain wall states, as the early-time peak
primarily depends on the local configurations of the ini-
tial state. We conclude that the EA overshooting at early
times is a generic feature for asymmetric evolution start-
ing from symmetric initial states.

By analyzing Fig. 9, we identify that the late-time EA,
denoted as ASE%, oscillates and does not approach
zero. This is because the reduced density matrix of sub-
system A evolves towards a thermal equilibrium state

_ﬂHA where Hy4 has the same form as H in Eq. (6), but
acts solely on subsystem A. Since Hy4 includes symmetry
breaking terms, [p4, QA] # 0, leading to a non-vanish-
ing EA at long times. In Fig. 9d, we calculate the ratio of
ASL°73 to the peak value (ASy3)max with varying y for dif-
ferent initial states. The late-time EA, AS775, is obtained
by averaging ASy;3 over 2000 random time points
between £; = 2000 and f; = 40000. The results further
confirm the overshooting behavior as the late-time satu-
rating EA value is much lower than the peak value at the
early time. On the contrary, the CV dynamics in this set-
ting shows no evident overshooting pattern but instead
directly grows to the saturating values.

4.2 U(1) asymmetric initial states with U(1) non-symmetric
Hamiltonian
We now consider U(1l)-asymmetric initial states. As
illustrated in Fig. 10a and b, we observe the emergence
of QME at early times in the symmetric Hamiltonian
y = 1. Here, we focus on QME between two initial states,
0 =027 and 6 = 0.5m. The origin of this QME can
be attributed to the relatively small ZZ term and gap-
less nature of the Hamiltonian [67]. As we deviate from
the symmetric point (y = 1), the overall value of EA
increases, exceeding the value found in the symmetric
case. This behavior aligns with our expectations, as the
symmetry-breaking effects now originate from both the
initial state and the Hamiltonian governing the dynam-
ics. It is worth noting that the EA curve for initial states
with stronger asymmetry rises higher than for states with
weaker asymmetry when1 — y # 0, eventually leading to
the disappearance of QME. Additionally, the threshold at
which QME vanishes varies depending on the type of ini-
tial states. QME persists for ferromagnetic states in the
range 0.8 < y < 1and for antiferromagnetic states in the
range 0.4 < y < 1. The robustness of QME against weak
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Fig. 9 EA as a function of time with (a) ferromagnetic and (b) antiferromagnetic states for different values of y under Hywith [ = 12.The insets
show the peak of EA at different values of y. From bottom to top: y = 0.8,0.7,0.6,0.5,0.4,0.3,0.2,0.1. Panels c and d show the peak value of EA,
(AS;/3)max, and the ratio of the late-time EA, A5f73, t0 (AS;/3)max as a function of 1 — y for various initial states under H;. GS denotes the value of EA

calculated from the ground state of H;

symmetry-breaking is a general characteristic of quan-
tum many-body systems when the Hamiltonian breaks
the symmetry.

We also investigate the late-time entanglement asym-
metry. As evident from Fig. 10c, d, the steady-state value
of EA exhibits a monotonic increase with the tilt angle 6,
consistent with the order at the initial states. This trend
persists for tilted antiferromagnetic states even when
y = 1. However, for tilted ferromagnetic initial states at
y = 1, we observe a late-time QME in the EA, where the
monotonicity is reversed, i.e. states with smaller § now
exhibit larger steady state EA.

Next, we explore the early- and late-time dynamics of
charge variance under the evolution of H; and Hj. As
shown in Fig. 11b, for tilted antiferromagnetic states, the
charge variance is consistently larger for states with higher
asymmetry (large 6) compared to those with lower asym-
metry (small 6). However, this trend does not hold for the
tilted ferromagnetic initial state, where the monotonic rela-
tionship of charge variance and 0 is reversed at early times.

As indicated in Fig. 11a, this leads to an early-time cross-
ing around ¢ = 2, which signifies the presence of QME. To
quantitatively analyze the early-time dynamics, we expand
the charge variance up to the second order in ¢ as

tz d202
26 a2 Q
O‘Q(t) ~ GQ(O) + E W ’ (7)
0
d?*c}
where the linear term in ¢ vanishes. Here, 72‘2 repre-
0

sents the second derivative of the charge variance evalu-
ated at ¢ =0. The initial state is chosen as a tilted
ferromagnetic state. Using the Heisenberg equation of
motion, the second derivative of the charge variance at
t = 0 can be expressed as:

2 2
d o4
dt?

= —(IH, [H, Q*1)o + 2(Q)o([H, [H, Qll)o,
0
(8)
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Fig. 10 Early-time EA dynamics for (a) tilted ferromagnetic states and (b) tilted antiferromagnetic states with varying y. The blue curves correspond
to 6 = 0.2, and the red curves represent § = 0.57. Late-time EA, ASL/4 as a function of 1 — y for () tilted ferromagnetic states and (d) tilted

antiferromagnetic states. All calculations are based on Hywith [ = 12

where H is the Hamiltonian of the system, taken here
as Hj. The notation (-)g denotes the expectation value
with respect to the initial state. Without presenting the
full derivation, we state that the second derivative of the
charge variance at ¢ = 0 is given by:

d2
Q| —ra-

T V) sin? 0 cos? 6

)2 +3L1 —

0 . ©
—3AL(1 — y)sin” 0 cos” 0
+AL(1 — y)sin®6 — L(1 — y) sin? 6.

The early-time growth of the charge variance for differ-
ent values of 6 is then approximated by

a5 (®)

2
=sin?6 + 5(1 —-y) [(1 —y)+ 1 -A) (3sin29c0529 — sinzeﬂ.

Here, the 1n1t1al charge variance, o 2(0), is replaced
with L(1 — cos® ). The QME observed in the charge
variance for the tilted ferromagnetic state at early
times arises from the ¢ coefficient in Eq. (10), which
governs the initial CV dynamics. This term drives
a crossing between states with different symmetry-
breaking effects. For small tilt angles (6 — 0), the
CV initially grows concavely, cl;}grgcterlzed by a posi-
tive second time derivative, W > 0. In contrast,
as 0 approaches /2, the second derivative becomes
negative (for suitable values of y and A), resulting in
a convex decay of the CV at early times. This qualita-
tive difference in dynamical behavior—concave versus

(10)
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Fig. 11 Early-time CV dynamics for (a) tilted ferromagnetic states and (b) tilted antiferromagnetic states at y = 0.7. Curves of different colors
correspond to different values of 6. Late-time CV, aéoo, as a function of 1 — y for (c) tilted ferromagnetic states and (d) tilted antiferromagnetic

states. All calculations are performed using the Hamiltonian Hywith L = 12

convex dynamics—underlies the emergence of the
QME in the charge variance.

Since the charge variance provides a quantitative meas-
ure of the spreading of charge across different sectors Q, we
analyze the time evolution of the probability distribution
Pg for the state |1/ (¢)), initialized in tilted ferromagnetic
states. The probability distribution within each sector is
defined as:

Po(t) =Y (WOl

q=Q (1

where |/,) denotes the complete set of charge eigen-
states with charge g. Figure 12 reveals distinct dynamical
behavior for different initial conditions: more asymmet-
ric states (larger 6) exhibit a progressive narrowing of the
charge distribution, resulting in suppressed charge vari-
ance. Conversely, weakly asymmetric initial states lead
to significant broadening of Pq(¢) across multiple charge

sectors, thereby enhancing the charge variance. This
contrasting behavior directly explains the emergence
of QME in the early-time charge variance dynamics. To
study the late-time behavior, we numerically compute the
long-time CV, O'éoo, by averaging over 2000 time points
between t; and fy. As illustrated in Fig. 11d, the charge
variance for the antiferromagnetic state retains a mono-
tonic dependence on 6 at late times. However, for the
tilted ferromagnetic state under non-symmetric evolu-
tion, the early-time QME in the CV persists into the late-
time regime, indicating an odd number of crossings for
CV curves of different 6 during the dynamics.

In Table 2, we summarize the early- and late-time
behavior of EA and CV for different initial states under
evolution governed by the non-symmetric Hamilto-
nian. Moreover, the results obtained from the non-inte-
grable Hamiltonian H> remain qualitatively consistent
with those of H;. The contrasting behaviors of EA and
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Fig. 12 Time evolution of the probability distribution, P, for each charge sector Q under the Hamiltonian H: with y = 0.6. The charge sectors range
fromQ = —12to Q = 12inincrements of 2. The rows, from top to bottom, correspond to time pointst = 0, 0.75, 1.5, and 3. Two columns, from left
to right, represent different tilted ferromagnetic states with & = 0.2t and 0.5

Table 2 The early- and late-time behavior of EA and CV under the evolution of Hyor H, (0.5 < ¥ < 1). Crossing in EA (CV) means when
the time-evolution curves of EA (CV) for states with larger 8 intersect with those for smaller 6 at early times. The right-up (right-down)

arrow indicates that the late-time value is increasing (decreasing) with increasing tilted angle 6

Ferromagnetic Domain wall Antiferromagnetic
EA (early time) Crossing for small1 — y Crossing for small1 — y Crossing for small1 — y
CV (early time) Crossing fory # 1 No crossing No crossing
EA (late time) / / /
CV (late time) N / /

CV highlight their complementary roles in character-
izing the strength and patterns of symmetry breaking.

5 Open questions and future directions

In this review, we systematically investigate the dynamics
of subsystem symmetry breaking and restoration, exam-
ining the evolution of both symmetric and asymmetric
initial states under symmetric and symmetry-broken
Hamiltonians or random circuits. Our results demon-
strate that persistent symmetry breaking within the sub-
system occurs exclusively when the dynamics are driven
by a non-symmetric Hamiltonian. This enduring asym-
metry manifests in the long-time behavior of the system,
as diagnosed by a non-vanishing entanglement asym-
metry. We further uncover distinct manifestations of
the quantum Mpemba effect across different measures:
(1) The entanglement asymmetry version arises under

symmetric evolution and remains robust against weak
symmetry-breaking perturbations, while (2) the charge
variance version emerges only in non-symmetric Hamil-
tonian dynamics. Despite these observations, several fun-
damental questions remain rarely explored, presenting
key opportunities for future research.

One of the fundamental challenges lies in determin-
ing whether discoveries about the quantum Mpemba
effect could provide a deeper understanding of its clas-
sical version. Investigating how classical and quantum
relaxation dynamics share similarities might reveal a uni-
fied description of anomalous thermalization, connecting
these seemingly distinct phenomena.

Our previous study [76] introduces two symmetry-
breaking protocols for Hamiltonian and random circuit
dynamics. This naturally leads to an important open
question: how universal is the quantum Mpemba effect
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when subjected to diverse symmetry-breaking pertur-
bations? For example, do non-Abelian symmetries, dis-
crete symmetries, and alternative symmetry-breaking
mechanisms (boundary impurity [126], time-dependent
perturbations) exhibit anomalous relaxation dynamics?
A comprehensive investigation of the effect’s robustness
across different symmetry-breaking scenarios could yield
new insights into non-equilibrium dynamics.

Beyond its standalone significance, the QME may
have deep connections to other anomalous dynamics in
quantum many-body systems. For example, how does
the QME relate to other anomalous dynamical phenom-
ena, such as dynamical phase transitions [127, 128], pre-
thermalization [129, 130], the Kibble-Zurek mechanism
[131-134], discrete time crystal [135, 136]? Are there
common underlying principles or can these phenomena
influence each other?

Furthermore, another essential direction for future
research is understanding how the QME manifests across
a broader range of quantum systems. This includes exam-
ining its behavior in systems with long-range interac-
tions, higher spatial dimensions, Floquet and annealing
protocols (as opposed to quench dynamics). Such stud-
ies could reveal whether the QME is a generic feature of
non-equilibrium quantum systems or if its emergence
depends critically on specific conditions.

Finally, the quantum Mpemba effect offers practical
advantages in fast non-adiabatic state preparation. Unlike
slow adiabatic cooling, it provides a shortcut to the tar-
gets, even from highly non-equilibrium conditions. This
could revolutionize quantum control by enabling faster
quantum state preparation in the context of quantum
simulation and information processing.

Despite significant progress in studying the Mpemba
effect across various systems, many mysteries remain
unresolved. From deep theoretical puzzles to real-world
applications, further research could uncover exciting
breakthroughs. The ongoing investigation of this phe-
nomenon may lead to surprising insights and innovative
technologies in the future
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