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In this study, we explore the information ca-
pacity of open quantum systems, focusing on
the effective channels formed by the subsys-
tem of random quantum circuits and quan-
tum Hamiltonian evolution. By analyzing
the subsystem information capacity, which is
closely linked to quantum coherent informa-
tion of these effective quantum channels, we
uncover a diverse range of dynamical and
steady behaviors depending on the types of
evolution. Therefore, the subsystem infor-
mation capacity serves as a valuable tool for
studying the intrinsic nature of various dy-
namical phases, such as integrable, localized,
thermalized, and topological systems. We
also reveal the impact of different initial in-
formation encoding schemes on information
dynamics including one-to-one, one-to-many,
and many-to-many. To support our findings,
we provide representative examples for numer-
ical simulations, including random quantum
circuits with or without mid-circuit measure-
ments, random Clifford Floquet circuits, free
and interacting Aubry-André models, and Su-
Schrieffer-Heeger models. These numerical re-
sults are further quantitatively explained using
the effective statistical model mapping and the
quasiparticle picture in the cases of random
circuits and non-interacting Hamiltonian dy-
namics, respectively.

1 Introduction
Quantum information can present rich and intrigu-
ing dynamical behaviors in different non-equilibrium
phases. The principles that govern the propagation
of information often defy intuition, contrasting with
the more familiar laws of matter and energy transfer.
Despite their counterintuitive nature, these principles
are of vital importance for advancing our comprehen-
sion of quantum thermalization [1–3], quantum chaos
[4–6], quantum gravity [7, 8], quantum computation
and error correction [9–12].
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Entanglement [13] and its growth [14–21] consti-
tute fundamental building blocks for modern con-
densed matter physics and usually offer valuable in-
sights from information perspectives for the analy-
sis of quantum many-body phases. Out-of-time cor-
relators (OTOC) [4, 22, 23], as another commonly
used information probe, also attract intensive aca-
demic interest owing to its multifaceted phenomena,
experimental relevance and relations with information
scrambling [7, 24–26] and holographic duality.

In this work, we introduce the subsystem informa-
tion capacity (SIC) to investigate information dynam-
ics in generic non-equilibrium systems. SIC is de-
fined on effective channels formed by the subsystem
under specific dynamical evolution. In essence, we
are investigating the proportion of the initial informa-
tion that can be faithfully transmitted and preserved
across varying temporal scales and subsystem sizes af-
ter Hamiltonian quench or quantum circuit dynamics.
SIC is closely related to the intrinsic nature of corre-
sponding dynamical phases and reflects the informa-
tion scrambling and information protection capabili-
ties from quantum information theory perspectives.

We demonstrate the equivalence between the sub-
system information capacity investigated here and
the concept of quantum coherent information [27]
for the effective subsystem channels in some cases.
This equivalence further connects the subsystem in-
formation capacity to the single-shot quantum chan-
nel capacity [28–33] in quantum communication. The
monotonically decreasing nature of quantum coher-
ent information with the application of any quan-
tum channels indicates that only the effective channels
that maintain the initial value of quantum coherent
information can admit perfect quantum error correc-
tion [34]. We also discuss the similarities and dif-
ferences between subsystem information capacity and
Holevo information, serving as bounds for quantum
and classical information transmission capacities, re-
spectively. The relation between OTOC and SIC is
also explored.

In this work, we examine the information aspects
of effective subsystem channels in a variety of systems
that hold significant experimental relevance or offer
clear analytical insights within certain limits. Our in-
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vestigation encompasses quantum circuits with brick-
wall two-qubit gates, incorporating randomness in
spatial or temporal dimensions, with or without mid-
circuit measurements. Additionally, we study infor-
mation dynamics in time evolution controlled by both
non-interacting and interacting Aubry-André (AA)
models and Su-Schrieffer-Heeger (SSH) models.

This paper is organized as follows. In Sec. 2 we in-
troduce the setups in this work including the models,
the encoding schemes, and the information metrics of
interest. In Sec. 3, we present the results from ran-
dom quantum circuits and apply the entanglement
membrane picture to quantitatively understand these
results. In Sec. 4, we present numerical results for the
time evolution of several one-dimensional representa-
tive fermionic Hamiltonians and understand the re-
sults with the quasiparticle picture in non-interacting
limits. In Sec. 5, we discuss possible future directions
and conclude. Several technical details and supple-
mental results are presented in the Appendices.

2 General setups
In this section, we introduce the setups utilized for
the definition of SIC in terms of models that describe
the dynamics including quantum circuits and time-
independent Hamiltonian evolution, schemes for in-
formation encoding at the initial state, and the probes
employed to characterize information dynamics. An
overview of our general setups and encoding schemes
is provided in Fig. 1. We also discuss the relations
between SIC and other information metrics and the
unique advantages for SIC.

x

t

(a) (b)

(c) (d) (e)

Figure 1: Schematic representation of the information dy-
namics settings for (a) random quantum circuits and (b)
time-independent Hamiltonian evolution, each accompanied
by distinct information encoding schemes for the initial state.
These schemes include (c) one-to-one encoding (d) finite rate
(many-to-many) encoding (e) one-to-all encoding.

SIC provides a direct measure of how effectively a

specific spatial subsystem A can preserve or recover
quantum information initially encoded in the region E
after undergoing time evolution U . Its core strengths
include:

• Direct Information-Theoretic Meaning: SIC is
fundamentally linked to the quantum coherent
information [27, 28], quantifying the capacity of
the effective subsystem channel to transmit quan-
tum information. This provides a clear opera-
tional interpretation relevant to quantum com-
munication, memory, and error correction.

• Rich Spatio-Temporal Information: SIC, defined
as a function of subsystem size x = |A| and time
t, provides a detailed map MI(x, t) revealing not
only the speed of information propagation but
also its spatial distribution and structure, partic-
ularly in the long-time limit.

• Broad Applicability and Sensitivity: SIC effec-
tively distinguishes diverse dynamical phases, in-
cluding thermalizing, integrable, Anderson local-
ized, many-body localized (MBL), and topologi-
cal phases, revealing characteristic “fingerprints”
in its late-time spatial profile (see Fig. 2).

• Experimental Advantages: Compared to stan-
dard protocols for OTOCs or Tripartite Mu-
tual Information (TMI), measuring SIC often re-
quires simpler state preparation (fewer entangled
qubits) and measurement protocols (only one for-
ward time evolution U), rendering it potentially
more feasible on near-term quantum hardware.

2.1 Models
We explore two categories of dynamical models: (1)
quantum circuit models including random circuits
and random Clifford Floquet circuits, and (2) time-
independent Hamiltonian evolution driven by Aubry-
André models without or with many-body interac-
tions as well as SSH model of topological characters.

In our analysis of circuit models, we focus on one-
dimensional random quantum circuits [35], featuring
a structured arrangement of even-odd brickwall lay-
ers with random two-qudit gates drawn from Haar
or Clifford ensembles. We also consider the cases
with mid-circuit measurements where the properties
of corresponding dynamics are averaged over different
measurement history trajectories [36–39]. Such mid-
circuit measurements can significantly influence the
global information structure and dynamics, offering a
contrast to the local unitary dynamics.

We also consider the random Clifford circuit setup
where the layers of two-qudit gates are time-periodic,
leading to what we term random Clifford Floquet dy-
namics. Previous studies reported that 1D random
Clifford Floquet systems show Anderson localization
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behaviors [40, 41], while 1D random Haar Floquet cir-
cuits tend to thermalize [42].

In terms of Hamiltonian dynamics, we consider one-
dimensional spinless fermionic Hamiltonians. These
Hamiltonians H can exhibit thermal, localization,
topology features and the details of these Hamilto-
nians are reported in Sec. 4. Consequently, the
quench dynamics under investigation is described by
the Hamiltonian evolution unitary e−iHt.

2.2 Encoding schemes
We adopt the initial state for the dynamics as simple
short-range entangled states, e.g. product states. In
the random circuit case, we simply use |0L⟩ as ini-
tial states as different product states lead to the same
results due to the randomness in the gates. Since
the Hamiltonian dynamics has an extra U(1) sym-
metry associated with charge conservation, the initial
state is better chosen as Néel states |0101 · · · ⟩ due to
the large Hilbert subspace that can be explored in
the dynamics. For both circuit models and Hamil-
tonian models, we consider periodic boundary condi-
tions (PBC) unless otherwise specified.

To encode quantum information in the initial state
and investigate its dynamics, we employ three differ-
ent schemes, and they can result in very different dy-
namical behaviors.

The most common encoding scheme, dubbed one-
to-one encoding in our work, is to entangle a single
ancilla qudit (purple arrow in Fig. 1(c)) with one
of the systems qudits (red arrow in Fig. 1(c)). We
label the reference qudits as R and the system qu-
dits entangled with reference qudits as E or simply
entangled qudits. Specifically, in our random cir-
cuit case, R and E forming an EPR pair at the be-
ginning as 1√

d

∑d
i=1 |i⟩R ⊗ |i⟩E . In the context of

fermionic Hamiltonian cases, we consider the Bell pair
1√
2 (|01⟩ − i|10⟩) to keep the initial state in a fixed

charge sector. This Bell pair can be achieved through
the action of a quadratic Hamiltonian evolution, as
exemplified by the following time evolution:

e−it(c†
1c2+c†

2c1)|01⟩ = cos t |01⟩ − i sin t |10⟩. (1)

Setting the free Hamiltonian evolution time to t =
π/4 leads to the desired Bell pair encoding.

In the meantime, other system qudits Ē remain in
the same product state as described above for ini-
tial states. The one-to-one encoding scheme is dif-
ferent from the typical information scrambling set-
tings in defining tripartite mutual information (TMI)
or connecting OTOC with Rényi entropy, where other
system qubits Ē are also initialized with fully mixed
states [26]. Therefore, our encoding schemes are dif-
ferent from conventional information scrambling set-
tings and more qubit-efficient for real quantum hard-
ware experiments (see Appendix D for detailed dis-
cussions).

If the encoded quantum information is proportional
to the size of the system, we call the encoding scheme
finite-rate encoding or many-to-many encoding. In
this work, we focus on the case where L/2 reference
qudits R are entangled with L/2 system qudits E
in a one-to-one fashion. We can thus study whether
the amount of information encoded can drastically re-
shape the information dynamics and information pro-
tection capacity.

Besides, we also investigate the one-to-many encod-
ing scheme. Specifically, we focus on the one-to-all
cases, where one qudit of information is encoded in the
global system at the beginning stage. The informa-
tion dynamics in this case is of particular interest for
its comparison with one-to-one local encoding. Prac-
tically, we encode one ancilla qudit R with all system
qudits into a GHZ state as 1√

d

∑d
i=1 |i⟩R ⊗ |iL⟩E and

evolve such a state under time evolution.

2.3 SIC Probes
We explore the information dynamics of a quantum
evolution process by focusing on the subsystem infor-
mation capacity. In this subsection, we introduce the
probe of subsystem information capacity and present
the differences and similarities between SIC and other
commonly used information indicators.

First of all, we establish the definitions and con-
ventions for entropy-based information measures used
throughout this work. We adopt the practice of defin-
ing entropies with a logarithmic base of logd for d-
qudits. The von Neumann entropy and Rényi entropy
for a quantum state ρ are defined as:

S = −Tr(ρ logd ρ), (2)

S(n) = 1
1 − n

logd Tr(ρn), (3)

respectively. The entanglement entropy of subsystem
A is defined via the reduced density matrix ρA, which
is obtained from the full system state ρ by partial
trace:

ρA = TrĀ(ρ), (4)

where Ā is the complementary subsystem to A. Ac-
cording to our convention, the entanglement entropy
of one qudit in a d-qudit EPR pair is SA = 1.

The mutual information between two systems A
and B is defined as:

I(A : B) = SA + SB − SAB (5)

The Rényi mutual information can be defined simi-
larly using Rényi entropies.

In our settings, as discussed in Sec. 2.2, the system
qubits are divided into E and Ē for the initial states.
We further categorize the system qubits into intervals
A and Ā for the output states at time t. Generally,
the number of freedoms of the region E and the region
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A are not necessarily the same. We identify the effec-
tive channel Esub formed by the subsystem evolution
mapping E to A as

Esub(ρE) = TrĀ

(
U(ρE ⊗ ρĒ)U†)

, (6)

where U describes the dynamics given by the quantum
circuit or Hamiltonian evolution, ρE = TrR(ρER) for
initial pure state ρER under given encoding scheme
and ρĒ is the initial state for subsystem Ē. Such an
effective channel is formed by the subsystem of some
dynamics after tracing out the complementary sys-
tem as given in Eq. (6), we call it the “subsystem
channel” that can be regarded as an evolution with
some form of dissipation induced by the complemen-
tary subsystem. Such subsystem channels are inter-
esting and explicitly useful for exploring the intrinsic
properties of a system as they are formed by tracing
out homogeneous physical freedoms instead of proto-
typical models where the freedoms for the system and
environment bath are heterogeneous.

With the lens of the subsystem channel, we intro-
duce SIC to describe the system’s information dynam-
ics

MI(x, t) = I(A : R)(t) (7)

where x = |A|, with A being a continuous region in
real space, and the entangled qubits E being located
in the middle of this region. It is obvious that the def-
inition depends on the encoding scheme as well as the
initial states ρĒ . Unless explicitly specified, we focus
on the case where ρĒ is a pure state. I(A : R)(t) is
the mutual information between subsystem A and ref-
erence qubits R at time t. This probe quantitatively
characterizes how much quantum information is left
within region A compared to the initial information
encoded under the subsystem channel. Specifically,
this quantity captures the spatial-temporal profile of
the information distribution via the two variables x
and t, and shows rich dynamical behaviors with vary-
ing t as well as steady behaviors with t → ∞ and
varying subsystem size x.

2.4 Late-time SIC as “fingerprints” for dynam-
ical phases
Following the presentation of our general frameworks,
we now highlight one of its most powerful applica-
tions: using the late-time spatial profile of SIC as a
characteristic “fingerprint” to identify and distinguish
different quantum dynamical phases. While the tem-
poral evolutionMI(x, t) reveals the dynamics of infor-
mation propagation, the focus here is on the steady-
state or long-time limit, MI(x, t → ∞). This quan-
tity, when plotted as a function of the subsystem size
fraction x/L = LA/L (typically for the one-to-one en-
coding scheme with E initially at the center or bound-
ary), reflects the stable spatial distribution achieved

by the initially localized quantum information at long
time limits.

Our central finding, concisely illustrated in Fig. 2,
is that this late-time SIC curve exhibits qualitatively
distinct and characteristic shapes depending funda-
mentally on the nature of the underlying dynamics
(e.g., chaotic, integrable, localized, topological). This
allows SIC to serve as an insightful diagnostic tool. By
treating the evolution U as a “black box”, measuring
the MI(x, t → ∞) profile provides a remarkably clear
means to discern intrinsic properties of the system’s
dynamical phase. The shape of this curve encapsu-
lates how effectively information initially encoded in
E can be recovered from subsystems A of varying size
in the long run, revealing crucial details about infor-
mation transport and memory within the system and
is potentially helpful in quantum error correction con-
text.

This “fingerprint” capability offers potentially richer
information than simpler metrics. For instance, while
steady-state entanglement entropy often follows vol-
ume or area laws for broad classes of phases, it might
not fully capture the structural differences within
those classes. As summarized in Table 1, different
phases that might all exhibit volume-law entangle-
ment (e.g., thermalizing chaotic systems vs. certain
interacting integrable systems) can display markedly
different late-time SIC profiles. SIC probes the struc-
ture and accessibility of specific initially encoded
quantum information distributed across spatial par-
titions.

The origin of these distinct fingerprints lies in
the fundamental mechanisms governing information
transport in different phases.

• In chaotic/thermalizing systems, information
scrambles rapidly throughout the system, leading
to a near-complete loss of recoverable information
from any small local subsystem |A| < L/2, result-
ing in a profile (Fig. 2(d)) until A encompasses a
significant fraction of the system.

• Anderson localized systems completely halt in-
formation transport. Information initially in E
remains localized, yielding an SIC profile as in
Fig. 2(b).

• Many-body localized systems exhibit an inter-
mediate behavior with slow (logarithmic) infor-
mation spreading but incomplete delocalization.
This results in a unique SIC profile (Fig. 2(f))
distinct from both thermal and Anderson phases,
reflecting partial information kept across larger
distances.

• Systems with localized modes, such as topolog-
ical edge states, can trap information near the
corresponding modes. If E is placed near such
a mode, the SIC profile can exhibit plateaus re-
flecting this trapping (Fig. 2(c)).
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• Integrable systems can show varied behaviors de-
pending on the nature of their quasiparticle exci-
tations (e.g., compare Fig. 2(a) for free fermions
vs. (d) for certain interacting cases).

Therefore, the late-time SIC profile MI(x, t → ∞)
provides a nuanced and powerful lens through which
to classify and understand the fundamental nature
of quantum dynamics, complementing and extend-
ing insights gained from traditional entanglement and
scrambling measures. It paves the way for a deeper
comprehension of how information behaves in com-
plex quantum systems, which is essential for both fun-
damental physics and applications in quantum infor-
mation processing.

2

2

2

2

2

2

(a)

(b)

(c)

(d)

(e)

( f )

Figure 2: Late-time subsystem information capacity with
one-to-one encoding scheme as a function of the subsystem
ratio LA/L, highlighting the qualitative differences in be-
havior across various dynamical phases. Each panel presents
the x-axis as LA/L and the y-axis as the average late-
time SIC, with the initial value 2. (a) Extended phase of
non-interacting fermion, with some integrable models follow-
ing similar trends. (b) Anderson localization phase of non-
interacting fermion. Anderson localization phase induced by
random Clifford Floquet circuit also follows similar curves.
(c) Topological phase with edge states with the entangled
qubit at the spatial boundary. (d) Chaotic phases including
random circuits and thermal phases of non-integrable inter-
acting systems. Notably, some non-thermal phases of inte-
grable interacting systems also display comparable behavior.
(e) Noise-resilient phase in monitored random circuits. (f)
Many-body localization phases.

2.5 Relation with other information metrics
There are a variety of indicators for evaluating in-
formation propagation and protection, such as quan-
tum coherent information, OTOC, tripartite mutual
information, and Holevo information. In the following
discussions, we clarify the differences and similarities

between SIC and these quantities and compares the
scope and advantages of SIC relative to those metrics.

2.5.1 Relation with quantum coherent information

For an arbitrary quantum channel E that maps the
state from ρ defined on system Q to ρ′ = E(ρ) defined
on system Q′ (the number of freedom can be different
for ρ and ρ′, i.e. |Q| ≠ |Q′|), we introduce the ancilla
system R and the pure state |ΨRQ⟩ such that it repro-
duces the input state ρ on Q as ρ = TrR|ΨRQ⟩⟨ΨRQ|.
The quantum coherent information is defined in terms
of the output state ρ′

RQ′ = (I ⊗ E)(|ΨRQ⟩⟨ΨRQ|):

IE = SQ′ − SQ′∪R. (8)

Given any unitary evolution U in our settings, SR = 1
remains unchanged, and thus the mutual information
I(A : R) defined in Eq. (7) reduces to the quantum
coherent information for the subsystem channel Esub,

I(A : R) = SA + 1 − SAR = 1 + IEsub
, (9)

where A and E in our settings correspond to Q and
Q′ in the definition of quantum coherent information.

The advantage of quantum coherent information
lies in that it has a data processing inequality [27],
which states that the quantity cannot increase with
the application of quantum channels. The initial co-
herent quantum information is the entropy of the in-
put state S(ρE) = S(ρA) which sets the upper limit
of the coherent quantum information of any output
state. As quantum error correction operations are also
quantum channels, the monotonicity of this quantity
suggests that perfect information protection and de-
coding are only feasible with channels that preserve
the initial value of coherent information (I(A : R) = 2
for unitary evolution U). Consequently, this mea-
sure serves as a faithful reflection of the channel’s
information capacity. Indeed, this quantity is used
to lower bound the single-shot quantum channel ca-
pacity [28–33], which gives the maximal amount of
quantum information that can be reliably transferred
via the quantum channel.

2.5.2 Relation with OTOC

OTOC is an important quantity that can diag-
nose information scrambling. It is defined as F =
Tr(Wi(t)VjWi(t)Vj) for infinite temperature systems.
If the two local operators W and V average over all
Pauli operators on two regions Ā and E, the corre-
sponding averaged OTOC is related to the Rényi-2
entropy S(2)

AR [26]. However, S(2)
AR here is defined in a

different setting from our case, where the input state
in Ē is a full mixed state ρĒ ∝ I. Specifically, all
system qubits are entangled with reference qubits in-
dividually, leaving the input to the unitary U a fully
mixed state on E ∪ Ē. On the contrary, we employ
the input state on Ē as a pure state ρĒ = |ψĒ⟩⟨ψĒ |.
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Table 1: Summary of main results: steady and dynamical entanglement behaviors with initial product state as well as steady-
state information distribution MI(x, t → ∞) under one-to-one encoding scheme in corresponding quantum many-body phases.

Phase Entanglement growth Steady-state entanglement Steady-state SIC

Chaotic phase
(Sec. 3.2.1, 4.3.1) Linear growth Volume law (Haar value) (d) in Fig. 2

Many-body localization
(Sec. 4.3.1) Logarithmic growth Volume law

(smaller than Haar value) (f) in Fig. 2

Anderson localization
(Sec. 3.2.2, 4.2) No growth Area law (b) in Fig. 2

Noise-resilient phase
(Sec. 3.2.1) Linear growth Volume law

(smaller than Haar value) (e) in Fig. 2

Free fermion extended phase
(Sec. 4.2) Linear growth Volume law (a) in Fig. 2

Interacting integrable systems
(Sec. 4.3.2) Linear growth Volume law (d) in Fig. 2

Topological edge states
(Sec. 4.4) Linear growth Volume law

(smaller than Haar value) (c) in Fig. 2

SWAP circuits
(Sec. 4.2) No growth Area law (a) in Fig. 2

CNOT circuits
(Sec. 3.2.3) No growth Area law

(possible long-range entanglement) Fig. 11

In sum, our settings differ from conventional settings
for mutual information and are highly qubit-efficient
for numerical simulations and experiments.

We establish a similar equivalence between mutual
information I(A : R) and OTOC for our setup with
pure initial states on Ē, see Appendix A for the proof.
The equivalent OTOC for SIC in our case is defined
over some projector operators specified by the pure
initial states in Ē and thus lacks the desired locality.
In other words, SIC is much easier to measure from
entropy-based quantities than from average OTOCs
for long-range operators.

The SIC proposed in this work has several advan-
tages over the commonly used probe OTOC for di-
agnosing information scrambling. From experimental

perspectives, SIC only requires one call on the evolu-
tion operator U , thereby eliminating the need for an
extra invocation on reversed time evolution U†, which
is typically required for measuring OTOCs [43]. (See
Appendix D for detailed comparisons of experimen-
tal protocols). While OTOCs of local operators are
frequently utilized to investigate when and how lo-
cal information could reach distant locations, they in
general may not resolve the detailed spatial distri-
bution of conserved or slowly scrambling information
within the system at late times. Consequently, they
are not straightforward to differentiate phases with-
out information scrambling. On the contrary, SIC
provides a more comprehensive insight into the global
structure of information propagation, evolution, and
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distribution and gives a finer classification on non-
chaotic phases. Notably, this research is the first to
unveil the steady-state information structures across
a variety of dynamical phases with the lens of SIC.

2.5.3 Relation with tripartite mutual information

Tripartite mutual information has been proposed to
explore the intrinsic information scrambling capacity
of unitary evolutions [26]. In settings for TMI, all sys-
tem qubits are entangled with external ancilla qubits,
as already discussed in Sec. 2.5.2.

Indeed, if ρĒ defined in Eq. (7) is I instead of a
pure state |ψĒ⟩⟨ψĒ |, our setup can be reduced to the
case in [26], where TMI is given as

I(R : A : Ā) = I(R : A) + I(R : Ā) − I(R : A ∪ Ā).
(10)

On the contrary, for our one-to-one encoding case with
pure initial states in Ē, the TMI defined above is triv-
ially zero, for any partition A and Ā of the system i.e.
I(R : A : Ā) = 0. This is guaranteed by the presence
of an effective information conservation law as long as
the state for the whole system A ∪ Ā ∪R is pure:

I(A : R) + I(Ā : R) = 2. (11)

Since the input state is pure for all encoding schemes
in the joint system E ∪ Ē ∪ R, the information con-
servation law holds as long as the system evolution is
unitary.

From the experimental perspective, the fully mixed
initial state preparation for standard TMI protocols
is resource-intensive, typically demanding 2L qubits
(L system qubits entangled with L reference qubits).
Conversely, the SIC with one-to-one encoding scheme
is considerably more efficient, requiring only a single
reference qubit and a total of L+ 1 qubits.

2.5.4 Relation with Holevo information

Another closely related information metric is Holevo
information [44]. The quantity provides a lower
bound on the classical information transmission ca-
pacity for a quantum channel, analogous to how quan-
tum coherent information bounds the quantum in-
formation transmission capacity. The definition of
Holevo information, in terms of the effective subsys-
tem channel introduced in this work, is

χA = S

 m∑
j

ρ
(j)
A /m

 − 1
m

m∑
j

S(ρ(j)
A ), (12)

where ρ
(j)
A = TrĀ

(
U |ψ(j)

0 ⟩⟨ψ(j)
0 |U†

)
is the reduced

density matrix after evolution on subsystem A, start-
ing from some pure initial state in the system |ψ(j)

0 ⟩.
Unlike quantum coherent information, the definition

above doesn’t explicitly introduce ancilla or refer-
ence systems. In terms of the one-to-one encoding
scheme, we have m = 2 and |ψ(2)

0 ⟩ = XE |ψ(1)
0 ⟩ =

XE |ψ0E⟩⊗|ψ0Ē⟩, where the two initial states only dif-
fer by a local perturbation on qubit E initially. The
first term in Holevo information then is the entropy
of the reduced density matrix on A, with initial ref-
erence qubit R entangled with the qubit E as a Bell
pair. Specifically, we employ the following relation:

|ψ0E⟩⟨ψ0E | +XE |ψ0E⟩⟨ψ0E |XE

2 =

TrR

(
(|0⟩R|ψ0E⟩ + |1⟩RXE |ψ0E⟩)(⟨0|R⟨ψ0E | + ⟨1|R⟨ψ0E |XE)

2

)
.

(13)
Accordingly, under the one-to-one encoding scheme,
the first term of Holevo information is reduced to SA

in the language of our main settings with reference
qubits R. The second term of Holevo information
is straightforward as the steady-state entanglement
for subsystem A averaged over different initial prod-
uct states. According to the statistical model map-
ping introduced in Sec. 3.1, the second term differs
from SA term in our main settings by the free bot-
tom boundary condition for E. For comparison, the
bottom boundary condition for E for SA and SAR

are I and C, respectively (Notations on the effective
statistical model are introduced in Sec. 3.1). Holevo
information ranges from 0 to 1, with the two limits
implying complete information loss and complete in-
formation protection, respectively.

Unlike SIC, Holevo information has no effective
conservation laws similar to Eq. (11). Specifically,
χA + χĀ ̸= χA∪Ā. For example, under one-to-all en-
coding, where the two initial states in Eq. (12) are
|ψ1

0⟩ = |0⟩⊗L and |ψ2
0⟩ = |1⟩⊗L, we have χA = χĀ =

χA∪Ā = 1. The presence and absence of information
conservation laws for quantum coherent information
and classical Holevo information imply the subtle dif-
ferences in characterizing information from classical
and quantum perspectives.

We remark that the SIC I(A : R) and Holevo infor-
mation χA can be equal to each other under a specific
condition: TrĀ(|ψ(1)

0 ⟩⟨ψ(2)
0 |) = 0, see Appendix B for

the proof.

In the subsequent sections, we present our find-
ings for the random circuit systems and Hamilto-
nian quench dynamics. The numerical data were ob-
tained using state-of-the-art computational tools, in-
cluding the Julia package QuantumClifford.jl for large-
scale Clifford circuit simulations, the Python package
TensorCircuit-NG [45] for scalable free fermion simu-
lations, and the Python package QuSpin [46, 47] for
simulations involving interacting fermions. The code
implementation can be found at [48].

Supplementing these numerical results, we provide
an in-depth theoretical analysis aimed at offering
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deeper insights into our observations. In the con-
text of random circuit dynamics, we employ a map-
ping to an effective statistical model that allows us
to quantitatively reproduce the numerical findings.
For the Hamiltonian dynamics, we leverage the quasi-
particle picture to gain an intuitive grasp of the sys-
tem’s behavior, especially in the non-interacting limit.
By combining these numerical and theoretical tools,
we aim to provide a comprehensive understanding of
the quantum information dynamics in various physi-
cal regimes.

3 Results for random circuit dynamics
Random quantum circuits [35] emerge as a promis-
ing and powerful platform for exploring a variety of
non-equilibrium phenomena, particularly from infor-
mation perspectives including entanglement growth
[20, 49] and information scrambling characterized by
OTOC and other metrics [50–54]. Recently, the noise-
resilience phase in monitored random circuits that can
protect information from mid-circuit measurements
also attracted a lot of interest [10–12, 36–39, 55–
63]. We remark that mid-circuit measurement is the
only ingredient we consider in this work that leads to
open system evolution and information leakage, i.e.
I(|A| = L : R)(t) < 2. It is an interesting future di-
rection to explore possibilities and properties of other
gadgets leading to information leakage in information
dynamics, which include quantum noises [64–69] or
construction with explicit ancillary environments [70].

To investigate the dynamical behavior in random
circuits with the lens of SIC, we consider systems with
qubits d = 2 numerically, and in the theoretical anal-
ysis, we consider systems composed of L d-qudits with
both large d limit and finite d corrections ensuring a
comprehensive understanding of the dynamics.

3.1 Analytical framework
In this subsection, we provide a concise review of the
analytical method that establishes the correspondence
between random quantum circuits and effective clas-
sical spin statistical models, with further details elab-
orated in Appendix C. Within this framework, the
entanglement entropy is interpreted as a so-called en-
tanglement membrane in space-time [71–73], i.e. min-
imal free energy domain walls between different per-
mutation valued spin in one dimension case. For an
in-depth discussion of the mapping and the field the-
ory, we direct the reader to [64, 66, 74–77].

The quantum circuit under investigation is com-
posed of random two-qudit unitary gates arranged in
a brickwall layout as shown in Fig 1(a). In this work,
we adopt the convention by taking the unit time ∆t =
1 for an even-odd layer of two-qudit gates. Note that
the convention gives the lightcone speed v = 2, which
may be different from some literature where ∆t = 1

refers to one even or one odd layer. After T layers of
gates, the output density matrix ρ is

ρ =
T∏

t=1
Ũtρ0Ũ

†
t , (14)

where ρ0 is the density matrix of the initial state and
Ũt is one even-odd layer of Haar random two-qudit
gates U at time step t. To obtain the von Neumann
entropy of the subsystem for the output state, the
density matrix can be rewritten in an r-fold replicated
Hilbert space

|ρ⟩⊗r =
T∏

t=1

[
Ũt ⊗ Ũ∗

t

]⊗r |ρ0⟩⊗r. (15)

The mapping to the effective statistical model is
achieved through the average over Haar random two-
qudit unitary gates U :

EU (U ⊗ U∗)⊗r =
∑

σ,τ∈Sr

Wg(r)
d2 (στ−1)|ττ⟩⟨σσ|, (16)

where Sr is the permutation group of degree r, d is
the local Hilbert space dimension of qudit, and Wg(r)

d2

is the Weingarten function [75, 78]. By independently
averaging over all two-qudit gates, the quantum cir-
cuit has been transformed into a classical statistical
model, where the degrees of freedom are formed by
permutation-valued spins σ, τ on a honeycomb lat-
tice. The partition function Z of this statistical model
is obtained by summing the total weights of different
spin configurations. We further trace over all τ spins
to make each configuration weight positive definite.

The total weight of a specific spin configuration af-
ter tracing τ freedom is the product of the weights of
all downward triangles W (σ1, σ2;σ3). In the large d
limit, we focus on the most dominant spin configura-
tion that has the largest total weight, i.e., the par-
tition function Z is determined by the weight of the
dominant spin configuration.

The statistical model is ferromagnetic by consid-
ering the weights of each downward triangle with
specific spin configurations as W 0(σ, σ;σ) ≈ d0 and
W 0(σ′, σ;σ) ≈ d−|(σ′)−1)σ| < d0 in the large d limit,
where |σ| is the number of transpositions required to
arrive σ from the identity permutation. Therefore,
all the spins tend to align in the same direction to
achieve the largest total weight. However, as dis-
cussed below, due to the particular boundary con-
ditions, domain walls may appear with free energy of
log

(
W 0(σ′, σ;σ)

)
for unit length. It is also worth not-

ing that the weight W 0(σ, σ;σ′) = 0 due to unitary
constraint [79, 80], which further restricts the possible
configurations of horizontal domain walls.

We now interpolate the von Neumann entropy Sα

as n = 1 limit for Rényi-n entropy

Sα = lim
n→1

S(n)
α = lim

n→1

1
1 − n

EU log tr ρn
α

(tr ρ)n
, (17)
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where ρα is the reduced density matrix of region α

and S
(n)
α is the n-th order Rényi entropy. We can

represent S(n)
α in n-fold replicated Hilbert space as

S(n)
α = 1

1 − n
EU log tr ρn

α

(tr ρ)n

= 1
1 − n

EU log Tr((Cα ⊗ Iᾱ)ρ⊗n)
Tr((Iα ⊗ Iᾱ)ρ⊗n)

= 1
1 − n

EU log Z
(n)
α

Z
(n)
0

, (18)

where C =
(

1 2 ... n
2 3 ... 1

)
and I =

(
1 2 ... n
1 2 ... n

)
are the cyclic and identity permutations in Sn group
applied on each qudit, respectively. With the help of
the replica trick [81, 82], we can overcome the diffi-
culty of averaging outside the logarithmic function

EU logZ(n)
α = lim

k→0

1
k

logZ(n,k)
α ,

EU logZ(n)
0 = lim

k→0

1
k

logZ(n,k)
0 , (19)

where

Z(n,k)
α = Tr

{
Cα ⊗ Iᾱ

[
EUρ

⊗nk
]}
,

Z
(n,k)
0 = Tr

{
Iα ⊗ Iᾱ

[
EUρ

⊗nk
]}
, (20)

with C =
(

1 2 ... n
2 3 ... 1

)⊗k

and I =(
1 2 ... n
1 2 ... n

)⊗k

are permutations in the r-fold

replicated Hilbert space with r = nk. Therefore,

Sα = lim
k→0
n→1

1
k(1 − n) log

{
Z

(n,k)
α

Z
(n,k)
0

}
, (21)

where Z is the partition function for the classical spin
model via the mapping. In the large d limit, the par-
tition function can be reduced to the weight of the
dominant spin configuration with the largest weight
with particular top boundary conditions: Cα ⊗ Iᾱ for
Zα and Iα ⊗ Iᾱ for Z0. Therefore, Sα can be repre-
sented as the free energy difference:

S(n,k)
α = 1

k(n− 1)

[
F (n,k)

α − F
(n,k)
0

]
. (22)

We note that the free energy F (n,k) is proportional
to the length of the domain wall with unit energy
k(n− 1), and thus 1

k(n−1)F
(n,k) is independent of the

index (n, k) in the large d limit. Moreover, the above
discussion has assumed that the initial state is a prod-
uct state with a free bottom boundary condition. In
the case with other input states, we have to figure out
the bottom boundary conditions case by case, i.e. to
compute the overlap between different spin configura-
tions and the input state ρ0, such as computing the
boundary weight contribution Tr(C⊗L

α ρ0).

v = 0

v = vB v = 1

(a)

v ≠ 0

(b)

(c) (d)

t

x

C
I

Figure 3: Entanglement membrane picture for random quan-
tum circuits. The time direction is bottom up as shown
by the axis. The top boundary conditions in (a)(b) and
(c)(d) correspond to the half-chain entanglement entropy in
an infinite system and finite interval LA entanglement en-
tropy in late times, respectively. Due to the free bottom
boundary conditions fixed by the product initial states, the
entanglement entropy is solely determined by the free energy
contribution from the entanglement membrane as

∫
t
E(v)dt.

For the former quantity shown in (a)(b), due to the fact
that argminvE(v) = 0, we conclude that (a) is the dom-
inant configuration, with the free energy contribution as
E(0)T = vET . In the latter case shown in (c)(d), the min-
imal free energy configuration gives v = vB as explained in
the main text. And (d) corresponds to the large d limit. In-
terestingly, both (c) in the finite d case and (d) in the large
d limit happen to give the identical free energy contribution
of LA.

Deviating from the large d limit to the qubit case
(d = 2), there are several new contributing factors
beyond the picture of dominant configuration with
unit domain wall free energy 1 (in the unit k(n− 1)).

(a) The least impacted factor is the separation of the
annealed and quenched averaged results for fi-
nite d, i.e. the difference between − lnEUZ and
−EU lnZ. This difference can be properly ad-
dressed by considering the effective interaction
between replicas and the term is in the order of
1/(d8 ln d) as revealed in [75]. Therefore, this dif-
ference can be safely ignored for most needs even
with d = 2. In the following, we only consider
k = 1 replica as we are satisfied with annealed
average results.

(b) The domain wall unit energy approximation is
also affected by the finite d correction. Recall
that in the large d limit, the triangular weight
with a domain wall separating C and I crossing is
d−k(n−1), namely for Rényi-2 entropy with k = 1
replica, the weight is d−1 (1 in the context of free
energy). However, in the finite d case for Rényi-2
entropy n = 2, k = 1, the domain wall separat-
ing C and I gives an exact unit weight d/(d2 + 1)
which is 2/5 for d = 2 qubit, rendering a large
deviation from 1/d from large d approximation.
This significant deviation from the large d ap-
proximation must be taken into account.
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(c) Lastly, with finite d, other configurations that are
less favorable in energy can give significant con-
tributions to the final partition function, as the
weights of configurations, each with terms that
are small by several orders in d, can be compen-
sated by the extensive freedom to arrange the do-
main wall. Consequently, the entropy (number of
configurations) contribution to the final partition
function or free energy must be carefully consid-
ered.

The last two factors mentioned above (b), (c) for fi-
nite d cases can be unified as the entanglement mem-
brane picture [71]. In the coarse-grained space-time
geometry, the domain wall/entanglement membrane
can still take some fixed configuration with the speed
v = dx

dt at each location. The total free energy contri-
bution of the domain wall is given by

∫
t
E(v)dt plus

the possible bottom boundary overlap weights. To
consider both the entropy term and the energy term,
we have the following line tension for Rényi-2 entropy
membrane in the random quantum circuit:

E2(v) = logd

d2 + 1
d

+ 1 + v

2 logd

1 + v

2
+1 − v

2 logd

1 − v

2 . (23)

The first term in Eq. (23) is from the domain wall
energy as indicated by (b), which is logd

d2+1
d instead

of 1 for large d limit. The remaining terms are from
the configuration entropy, with the Stirling approx-
imation applied to the binomial coefficients for the
total count of possible domain wall configurations:

logd

(
T (1 + v)/2

T

)1/T

≈

1 + v

2 logd

1 + v

2 + 1 − v

2 logd

1 − v

2 . (24)

Essentially, in the large d limit, the effective tempera-
ture for the classical statistical model is zero as other
energy unfavorable configurations are frozen with the
weights smaller than the dominant configuration in
the order of d, which is the largest scale in the large
d limit. In some cases, zero temperature entropy also
exists when many different domain wall configurations
give the largest weight of the same values, such as in
the case of a vertical domain wall with free bottom
boundary conditions.

On the contrary, finite d is too small to separate dif-
ferent weights and the configuration with less weights
can significantly contribute to the free energy. Cal-
culating the partition function by summing the ex-
ponentially many weight terms of different configu-
rations remains challenging. Instead, we seek an al-
ternative base to d that can differentiate the weight
scales, necessitating the consideration of only dom-
inant configuration collections in the finite d case.

In the coarse-grained space-time lattice, we catego-
rize these configurations based on their effective speed
in each time slice, meaning a group of configura-
tions shares the same v(t) for the domain walls. The
sum of weights of such a group of configurations is
d

−
∫

t
E2(v)dt. The weight sum ratio between different

groups of configurations is thus d

∫
t
(E2(v1)−E2(v2))dt,

which can be very large for favored v1(t) with suf-
ficiently long domain wall (large T =

∫
t
dt). Namely,

although d is too small to suppress other weights, dT

is still large enough to suppress other configuration
groups in favor of the dominant group characterized
by optimal v(t). The optimal v(t) is consequently
taken to minimize the tension energy of the entan-
glement membrane v(t) = argminv

∫
t
E2(v)dt. In this

work, we only focus on cases where optimal v is con-
stant over time, i.e. the preferred representative do-
main wall is a straight line in the space-time lattice.

We now focus on some special limits of the entan-
glement membrane picture for a better understanding.
Firstly, we consider the problem of half-chain entan-
glement growth in an infinitely long random quan-
tum circuit. This quantity can map to the ferromag-
netic statistical model with a top boundary condi-
tion of half chain in C and half chain in I. Since
the space extent is infinite, the dominant domain wall
must be vertical. Noticing the bottom boundary is
free due to the product state input, the vertical do-
main wall with velocity v(t) = v gives the free en-
ergy as E2(v)T . According to Eq. (23), the mini-
mum value of E is achieved when v = 0, we have
vE = E(0) = logd

d2+1
2d ≈ 0.322. Note that the def-

inition of time unit in our work is twice as [75], i.e.
our vE = 0.644. Further analysis including the differ-
ence between annealed and quenched averages gives a
more accurate result as in Eq. (6) in [75], the speed
of Rényi-2 entropy in random Haar circuit is given by
the field theory up to O( 1

d10 ln d ) as vE ≈ 0.643. We
can confirm that the difference between annealed and
quenched average is small as discussed in factor (a)
above. The entanglement membrane picture is sum-
marized in Fig. 3(a)(b).

We now consider another limit, focusing on the en-
tanglement entropy of the finite interval LA. In late
times, the entanglement is saturated, the statistical
model has a top boundary condition with LA sites
having C configuration and others having I configu-
rations. Since now the time direction is sufficiently
long, the vertical domain wall is not favorable any-
more. The favored domain wall would be a downward
triangle with velocity v on both sides near the top
boundary as shown in Fig. 3(c)(d). The free energy
is then E2(v) LA

v . To minimize this objective, we set
the derivative zero: vE′

2(v) = E2(v), this gives a veloc-
ity vB , which corresponds to the operator spreading
speed, satisfying the assumption that E2(vB) = vB

and E′
2(vB) = 1 [71]. In random quantum circuit
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case, vB = d2−1
d2+1 . Considering the time unit defini-

tion is our work, we have vB = 1.2 in d = 2 qubit
system. Plugging the speed vB into the free energy,
we have S2 = LA. This result is particularly intrigu-
ing, as it contrasts with the vertical domain wall; the
free energy of the triangular domain wall near the top
boundary remains identical for the large d limit and
finite d case. Therefore, in the following domain wall
pictures, we simply use v = 1 domain wall in the
visualization, which represents the free energy contri-
bution in terms of the spatial length LA both in the
large d and finite d case.

3.2 Numerical results
We now present the numerical results for different cir-
cuit models and different encoding schemes using ran-
dom Clifford circuits [83], along with quantitative pre-
dictions based on the analytical framework presented
above. We demonstrate that the numerical simula-
tions align well with the analytical predictions.

3.2.1 Random circuit with one-to-one encoding

0.2 0.4 0.6 0.8 1.0
LA/L

0.0

0.5

1.0

1.5

2.0

M
I(
t
→
∞

)

pm = 0
pm = 0.05
pm = 0.1

Figure 4: Steady-state SIC in random quantum circuit
with different subsystem sizes LA using one-to-one encod-
ing scheme. The system size L = 512, the result is averaged
over 1000 random configurations. pm represents the mid-
circuit measurement probability.

We first investigate the results for one-to-one en-
coding as shown in Fig. 1(c). For random circuits
with and without mid-circuit measurements, the late-
time steady-state mutual information between the ref-
erence qubit and the subregion A in the system cen-
tered around the entangled qubit MI(LA, t → ∞)
is shown in Fig. 4. In terms of mid-circuit mea-
surements, we only focus on the noise-resilient phase,
where the steady-state entanglement is volume law
and the measurement probability pm < pm

c ≈ 0.16.
We find that the steady mutual information for the

random unitary circuit without mid-circuit measure-
ments shows a step function behavior: for LA < L/2,

MI = 0 while for LA > L/2, MI = 2 (pattern (d) in
Fig. 2). In other words, the information can be per-
fectly decoded from a subsystem with more than half
the system while the information is totally lost for a
subsystem of less than half of the system. This result
indicates full information scrambling and is consis-
tent with the philosophy of Hayden-Preskill thought
experiment [7]. Considering the information conser-
vation law I(A : R) + I(Ā : R) = 2, the steady-
state mutual information applies to any subregion of
a given size no matter whether A has included the
initial E qubit. This is understandable since the in-
formation is fully scrambled in structureless random
quantum circuits rendering the initial position of the
encoding irrelevant. It is worth noting that this typi-
cal step function behavior in the steady-state mutual
information is a universal feature of thermalized sys-
tems, which we will revisit in the context of fermionic
Hamiltonian dynamics.

In the presence of mid-circuit measurements with
pm > 0, the mutual information is lower than the
saturating value 2 even with LA = L indicating infor-
mation leakage. This is because a portion of the in-
formation has been extracted through measurements
and transferred to the environment. The steady-state
curve is described by pattern (e) in Fig. 2.

Next, we investigate the dynamics of MI(x, t) with
varying t before reaching steady states. Fig. 5(a) il-
lustrates the information dynamics for random quan-
tum circuits without mid-circuit measurements. In
this figure, we also present the predictions from the
analytical framework using the entanglement mem-
brane picture and find that the results match remark-
ably well with the theoretical predictions. To gain a
deeper understanding of the dynamics, we show the
dominant entanglement membrane picture for differ-
ent times in Fig. 6. In each spin configuration plot,
the time direction is oriented upwards. The upper
panel in each case shows the dominant configuration
for SA with top boundary conditions C (purple color)
in the region A and I on the region Ā as well as the
reference qubit R. The lower panel in each case shows
the dominant configuration for SAR, and the only dif-
ference compared to the effective model for SA is that
the reference qubit is applied with the boundary con-
dition C. To compute the free energy contribution of
each given configuration, we compute the contribu-
tion from the tension energy of the domain walls and
the overlaps from the bottom boundary.

For example, for LA < L/2, the top-boundary tri-
angular domain wall is only geometrically possible for
vEt > LA/2 and contributes to the free energy as LA

as we explained in Sec. 3.1. Similarly, the vertical do-
main wall contributes free energy as vEt, where t is the
domain wall length. As the vertical domain wall and
the triangular domain wall near the top boundaries
compete, the phase transition occurs for the time t =
LA/(2vE). To compute the entropy, we have to also
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(c) L= 64, pm = 0.1
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Figure 5: SIC dynamics in random quantum circuit with dif-
ferent subsystem sizes LA using one-to-one encoding scheme
with or without mid-circuit measurements. (a) System size
L = 512, mid-circuit measurements pm = 0, (b) L = 512,
pm = 0.1, (c) L = 64, pm = 0.1, average over 1000 random
circuit configurations.

consider the contribution from the bottom boundary
overlap. Since the input state beyond the entangled
qubit is in the form of a product state, the bottom
boundary beyond the entangled qubit is all free, in
the sense that for each qubit i we have Tr(Ciρ

⊗r
i ) =

Tr(Iiρ
⊗r
i ) = 1. For the entangled qubit with reference

qubit E ∪R, we have Tr(CECRρ
⊗r
B ) = Tr(IEIRρB) =

1 and Tr(CEIRρ
⊗r
B ) = Tr(IECRρ

⊗r
B ) = d−r, where

ρB = 1
2 (|0E0R⟩ + |1E1R⟩)(⟨0E0E | + ⟨1E1R|) is the

initial Bell pair. In sum, for LA < L/2 and vEt <
LA/2, we have SA = 2vEt + 1. Similarly, we have
SAR = 2vEt which lead to the mutual information
I(A : R) = SA + 1 − SAR = 2. The physical mean-
ing is that the information is fully kept in the sub-

MI = 20 (L − LA)/2

LA > L/2

vEt

MI = 20 LA/2

LA = L/2

vEt

LA < L/2

MI = 20 LA/2
vEt

(a)

(b)

(c)

SA = 2vEt + 1

SAR = 2vEt

SA = 2vEt + 1

SAR = 2vEt

SA = 2vEt + 1

SAR = 2vEt

MI = 2

MI = 1

MI = 0

SA = LA

SAR = LA + 1

SA = LA

SAR = L − LA

SA = L − LA + 1

SAR = L − LA

Figure 6: Entanglement membrane explanation for the infor-
mation dynamics in random quantum circuit with one-to-one
encoding. vE ≈ 0.643. Each domain wall configuration gives
a free energy contribution in terms of the effective statisti-
cal model and thus an entropy value in terms of the original
circuit model. SR = 1 is constant over time and is ignored
in the figure. The target quantity MI = SR + SA − SAR

can be constructed from the above dominant configurations
at different times and different subsystem sizes.

system at short times t < LA/(2vE). On the other
hand, the top-boundary triangular weight will domi-
nate, and gives SA = LA and SAR = LA + 1 at late
times, leaving the mutual information I(A : R) = 0.
The prediction is consistent with numerical results in
Fig. 5(a). We find that for subsystems smaller than
half the system, the mutual information first is 2 and
at some later time t∗ suddenly drops to zero. The
timescale t∗ for the mutual information drop is ex-
actly given by LA/(2vE), and this setting explains
why vE can be regarded as a velocity.

A similar analysis can be applied for LA = L/2 and
LA > L/2. For LA = L/2, we have SA = 2vEt + 1
and SAR = 2vEt for t < LA/(2vE), and SA = LA and
SAR = L − LA = LA for t > LA/(2vEt). This gives
us a mutual information drop from 2 to a plateau of
value 1. For LA > L/2, the analysis is the same for
the short time stage of LA = L/2 . For t > LA/(2vE),
now the dominant domain wall for both SAR and SA

is of length L−LA, leaving MI = (L−LA + 1) + 1 −
(L−LA) = 2, which explains why the information can
always be fully held in any subsystem of more than
half the size.

The analysis utilizing the effective statistical model
can be extended to other information metrics, such
as Holevo information mentioned in Sec. 2.3. In this
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case, the upper panel for each time slice and LA are
kept unchanged to account for the first term in Holevo
information, SA. The second term for Holevo infor-
mation is characterized by the statistical model with
free boundary conditions on the entangled qubit E.
For small t, the entanglement membrane picture re-
mains the same as SAR, yielding the same plateau dy-
namics starting from χA = 1. For steady-state Holevo
information, the second term is LA for LA ≤ L/2 and
L − LA for LA > L/2. The steady-state χA(t → ∞)
is thus 0 and 1 for LA ≤ L/2 and LA > L/2, respec-
tively. Remarkably, the results for mutual informa-
tion and Holevo information show qualitative differ-
ence when LA = L/2: while the steady-state mutual
information is half as the initial value, the steady-
state Holevo information is zero.

With the mid-circuit measurement pm > 0, the in-
formation dynamics is shown in Fig. 5(b)(c). For
large-size systems, the information decay is catego-
rized into two stages. In the early stage, the informa-
tion stored in the subsystem universally drops due to
the measurements. Since we are in the noise-resilient
phase of MIPT, the final steady information is non-
zero. The time scale t∗ to approach the measurement-
induced steady state is rather small in the order of
O(10) for pm = 0.1 and agnostic to the system size.
For any subsystem size LA > 2vEt

∗, the correspond-
ing mutual information with the reference qubit R
will experience two stages of dynamics separately. At
the first stage, the information drops due to the mon-
itored dynamics and stays at the plateau induced by
measurements for t∗ < t < LA/(2vE). At the second
stage with t > LA/(2vE), the information begins to
drop again from the universal plateau due to the infor-
mation scrambling to the complementary system Ā.
For small systems where LA ∼ 2vEt

∗, the two stages
of information dynamics become mixed as shown in
Fig. 5(c), i.e. the information is spreading to the sub-
system Ā and leaks to the environment at the same
time.

3.2.2 Random Floquet circuit with one-to-one encod-
ing

In this subsection, we investigate the information dy-
namics in random Floquet circuits, i.e. random cir-
cuits with time periodicity. These circuits exhibit dis-
tinct dynamical phases depending on whether the lo-
cal random gates are sampled from a random Haar
ensemble or a random Clifford ensemble. The former
ensemble leads to thermal phases [42] while the latter
ensemble leads to Anderson localization phases in one
dimension [40] and thermal phases in higher dimen-
sions [41]. To facilitate the large-scale numerical sim-
ulation, we focus on the 1D random Clifford Floquet
circuits as the testbed. This model can reveal the in-
formation dynamics in Anderson localization systems
while other chaotic Floquet systems are believed to
show similar full information scrambling dynamics as

discussed in Sec. 3.2.1.
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Figure 7: Steady-state SIC in 1D random Clifford Floquet
circuit with different subsystem sizes LA under one-to-one
encoding scheme. L = 64, 128, 256, 512, average over 1000
configurations. We can see that curves of different system
sizes collapse implying Anderson localization behavior with
the typical localization length around 50.

Fig. 7 shows the steady-state mutual information
with respect to different subsystem sizes LA. In An-
derson localization phases, the mutual information
curve converges in thermodynamic limit with LA as
x-axis, indicating a system size irrelevant localiza-
tion length. The curve will be always at value 2 if
the x-axis is LA/L in the thermodynamic limit. In
other words, the localization length restricts the ca-
pacity of information scrambling, and no information
can spread far away beyond the localization length.
Therefore, the output subsystem with size on the or-
der of localization length is sufficient to extract most
of information stored at the beginning.

3.2.3 Random circuit with one-to-all encoding

In this subsection, we focus on the one-to-all encoding
where the reference qubit is entangled with all system
qubits in a GHZ state. When mapping to the statisti-
cal model, one-to-all encoding introduces a nontrivial
bottom boundary condition compared to free bound-
ary conditions for product initial states. We can show
that

Tr(
L∏

i=0
Ci(|GHZ⟩⟨GHZ|)⊗r)

= Tr(
L∏

i=0
Ii(|GHZ⟩⟨GHZ|)⊗r)

= d0 = 1, (25)

where the reference qubit corresponds i = 0. Besides,
the overlap between GHZ state and all other permu-
tations such as

∏k
i=0 Ci

∏L
i=k+1 Ii gives d−r. Notably,

the bottom boundary overlap is agnostic to the sys-
tem size L. In other words, as long as not all the
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spins at the bottom layer of the statistical model share
the same permutation configuration as the reference
qubit R, there is an extra contribution of 1 to the
free energy/entanglement entropy. This is often fa-
vored since the relaxation of the boundary condition
can arrange a more compatible configuration pattern
between the bottom layer and the bulk so that the
energy gain is larger than 1.

The initial mutual information behavior MI(t = 0)
in the one-to-all encoding case is also distinct from
one-to-one encoding. For one-to-one encoding, the
initial mutual information MI(t = 0) = 2 for any
subsystem that covers the entangled qubit E. How-
ever, for the GHZ state, it is straightforward to show
that for any subsystem 0 < LA < L, MI(t = 0) = 1.
Such spatial distribution of the information can also
be regarded as the steady state from so-called cnot cir-
cuits where each two-qubit gate is randomly selected
from identity or cnot gate.
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Figure 8: Steady-state SIC in random quantum circuit
with different subsystem sizes LA under one-to-all encoding
scheme. The system sizes are L = 64, 128, 256, the results
are averaged over 1000 configurations. The result is consis-
tent with one-to-one encoding for pm = 0. However, with
the introduction of mid-circuit measurements pm > 0, MI
immediately decays to zero as long as the first mid-circuit
measurement occurs (not shown in the figure).

Fig. 8 presents steady-state mutual information
with different subsystem sizes LA. We find the re-
sult is consistent with one-to-one encoding and the
curves of different sizes collapse with rescaled subsys-
tem size LA/L, contrary to Fig. 7, where late-time
curves could collapse with respect to subsystem sizes
LA. Again, the results only rely on the subsystem
size and are independent of the subsystem’s position
which is unsurprising as there is no specific entangled
qubit at all due to the global nature of the one-to-all
encoding scheme. The corresponding information dy-
namics is shown in Fig. 9. The initial value for MI is
1 for different system sizes as expected. For subsys-
tems with size LA > L/2 (LA < L/2), the information
capacity increases (decreases) with the evolved time
from 1 and vice versa. The entanglement membrane

picture, as shown in Fig. 10, offers a comprehensive
explanation for the steady and dynamical behaviors
of subsystem information capacity. It is worth not-
ing that the nonuniform configuration at the bottom
boundary gives 1 extra unit of free energy due to the
bottom boundary condition imposed by GHZ states.
The timescale at which the mutual information begins
to deviate from the initial value 1 is also determined
by LA/(2vE) for LA < L/2, which is consistent with
the numerical results.
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Figure 9: SIC in random quantum circuit with different sub-
system sizes LA under one-to-all encoding scheme at the
beginning. L = 256, average over 1000 configurations.

We now discuss the dynamics of Holevo informa-
tion χA with the help of the entanglement membrane
picture. Under one-to-all encoding, the two initial
states, as employed in the definition of Holevo infor-
mation in Eq. (12), are |ψ1

0⟩ = |0⟩⊗L and |ψ2
0⟩ =∏L

i Xi|ψ1
0⟩ = |1⟩⊗L. The two terms of Holevo infor-

mation are thus determined by the upper panel for
SA in Fig. 10 and the same statistical model with
free bottom boundary conditions, respectively. The
initial value of Holevo information χA(t = 0) for one-
to-all encoding is 1, the saturating value for Holevo
information, contrasting with half of the saturating
value for initial mutual information. In terms of the
steady-state value, χA(t → ∞) = 1 or 0 depending
on whether LA > L/2 or LA ≤ L/2. Consequently,
the dynamics for mutual information and Holevo in-
formation is distinct with LA > L/2: while mutual
information starts from 1 and increases to 2 at the
time scale LA/(2vE), Holevo information stays at the
initial value 1 for the whole evolution. The qualitative
differences between mutual information and Holevo
information enrich our understanding of quantum in-
formation theory by revealing the nuanced interplay
between various information-theoretic quantities.

We further discuss the implications of monitoring
circuits with one-to-all encoding. Since the informa-
tion is encoded into the GHZ state globally at the
initial stage, a single mid-circuit measurement is suf-
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Figure 10: Entanglement membrane explanation for the in-
formation dynamics in random quantum circuit with one-to-
all encoding. vE ≈ 0.643. Each domain wall configuration
gives a free energy contribution in terms of the effective sta-
tistical model and thus an entropy value in terms of the origi-
nal circuit model. SR = 1 is constant over time and is ignored
in the figure. The target quantity MI = SR + SA − SAR

can be constructed from the above dominant configurations
at different times and different subsystem sizes.

ficient to extract the one-qubit information from the
system. Therefore, with any pm > 0, SIC drops
to zero as long as t > 0, rendering the informa-
tion dynamics trivial. Therefore, although full scram-
bling by local unitaries after one-to-one local encod-
ing and initial states by direct one-to-all encoding are
both of global nature, the former is resilient to mid-
circuit measurements in terms of information protec-
tion while the latter is fragile. This difference can
be revealed by different spatial information distribu-
tions: the former case has a distribution like the curve
in Fig. 8, while the latter case gives a horizontal line
of value 1 for any LA.

3.2.4 Random Floquet circuit with one-to-all encoding

Since the initial values of MI are 1 for all subsystems
with one-to-all encoding scheme, an interesting ques-
tion arises on the fate of such information dynamics
in Anderson localization systems. We here report the
information dynamics results with one-to-all encod-
ing in random Clifford Floquet circuits. The late-time
steady-state mutual information curve is depicted in
Fig. 11. With increasing system sizes, the steady-
state mutual information also converges to 1 irrespec-
tive of the subsystem size LA < L. Thus we conclude

in the thermodynamic limit, the steady-state infor-
mation capacity is always 1 for any LA < L (MI = 2
for LA = L). This fact suggests that Anderson lo-
calization can fully stop the information spreading, a
phenomenon that becomes more pronounced as shown
in Fig. 12. The mutual information for any subsystem
size remains essentially unchanged, with minor fluc-
tuations attributed to finite-size effects. In the ther-
modynamic limit, mutual information is expected to
stabilize at 1 for all times and across all subsystem
sizes LA < L. The global encoding strategy thus of-
fers a clearer insight into the intrinsic characteristics
of Anderson localization, where information spreading
is effectively halted.
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Figure 11: Steady-state SIC in 1D random Clifford Flo-
quet circuits with different subsystem sizes LA under one-
to-all encoding scheme at the beginning. System sizes
L = 64, 128, 256, t > L, and the results are averaged over
1000 configurations. The results imply MI(t → ∞) = 1 for
any LA < L in the thermodynamic limit.
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Figure 12: SIC dynamics in 1D random Clifford Floquet cir-
cuits with different subsystem sizes LA under one-to-all en-
coding scheme. System size L = 512, no mid-circuit mea-
surement presents pm = 0, and the results are averaged over
1000 configurations. The temporal fluctuations can be at-
tributed to finite size effects.
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Figure 13: Steady-state SIC in 1D random quantum circuit
with different subsystem sizes LA under finite rate encod-
ing scheme which encodes L/2 Bell pairs with L/2 ancilla
qubits at the beginning. System size is L = 512. Results
are presented with different pm and are averaged over 200
configurations.

3.2.5 Random circuit with many-to-many encoding

We now consider the finite rate encoding scheme,
specifically focusing on the case where L/2 reference
qubits are entangled in Bell pairs with L/2 system
qubits |E| = |R| = L/2. The final mutual information
is normalized by L/2 in this subsection so that the
value of MI is comparable with previous cases with
initial value MI = 2 for subsystem size LA > L/2. In
this setting, we always focus on the subsystems that
include all the entangled system qubits |A| ≥ |E|. The
steady-state mutual information behaviors are shown
in Fig. 13 and the dynamics without and with mid-
circuit measurements are shown in Fig. 14.

The steady-state results demonstrate that when
the mid-circuit measurement probability p exceeds
the threshold pm, information is completely lost as
expected. Furthermore, the mutual information at-
tains its maximal value 2 when the subsystem size
LA > 3L/4, reminiscent of the one-to-one encod-
ing where LA > L/2 is sufficient for full information
restoration. In terms of the dynamics, we observe a
stage where the mutual information decays linearly,
contrasting with the one-to-one encoding case where
the mutual information suddenly drops to the steady
value at t = LA/(2vE).

The three stages of the information dynamics, pre-
dicted by the dashed line in Fig. 14(a), can also
be perfectly explained via the entanglement mem-
brane picture as shown in Fig. 15. Unlike one-to-
one and one-to-all encoding cases, now the bottom
boundary condition can have extended overhead. If
the L/2 ancilla qubits are imposed with boundary
condition C, then each configuration I in the region
E will contribute 1 to the free energy. The differ-
ence in the bottom boundary condition induces the
emergent stage where the information shows linear
decay instead of the sudden drop observed and pre-
dicted in previous cases. This new stage is specifi-
cally tied to the second column in Fig. 15(a) when

Figure 14: SIC dynamics in 1D random quantum circuit
with different subsystem sizes LA under finite rate encoding
scheme which encodes L/2 Bell pairs with L/2 ancilla qubits
at the beginning. System size is L = 512 with pm = 0 (a)
pm = 0.05 (b) and pm = 0.1 (c). The results are averaged
over 200 circuit configurations. The information decay is
very slow compared to dynamics in the one-to-one encoding
case. The dashed line in (a) is the analytical result predicted
by the entanglement membrane picture.

(LA − L/2)/(2vE) < t < (L − LA)/(2vE). For SA in
this case, the free energy is given as 2E(v)t+LA −2vt,
the minimization of this term gives E′(v) = 1, which
determines the velocity of the optimal entanglement
membrane as vb and thus SA = LA independent of
the time t. However, SAR = 2vEt in this case relies
on t. Therefore, the target SIC, as the differences
between the two terms, has linear t dependence as
shown from numerical simulation. For the cases with
mid-circuit measurements, we again observe the two
stages of information drop: the first stage is universal
as information leakage induced by measurements and
the second stage resembles the behaviors for pm = 0
limit which is induced by information propagation.

Accepted in Quantum 2025-06-16, click title to verify. Published under CC-BY 4.0. 16



(a)

MI = L

0 (LA − L/2)/2 LA/2

3L/4 > LA > L/2

MI = 2LA − L/2MI = LA + L/2 − 2vEt

(L − LA)/2
MI = 2LA − L/2

vEt

MI = L

0

LA > 3L/4

MI = L

(L − LA)/2
vEt

(b)

SA = 2vEt + L/2

SAR = 2vEt

SA = LA

SAR = 2vEt

SA = LA

SAR = L − LA

SA = LA

SAR = L − LA

SA = 2vEt + L/2

SAR = 2vEt

SA = L − LA + L/2

SAR = L − LA

Figure 15: Entanglement membrane explanation for the information dynamics in random quantum circuit with many-to-many
(finite rate) encoding. Each domain wall configuration gives a free energy contribution in terms of the effective statistical
model and thus an entropy value in terms of the original circuit model. SR = L/2 is constant over time and is ignored in the
figure. The target quantity MI = SR + SA − SAR can be constructed from the above favorable configurations at different
times and different subsystem sizes. (a) L/2 < LA < 3L/4 and (b) LA > 3L/4.

3.2.6 Random Floquet circuit with many-to-many en-
coding

In one-dimensional random Clifford Floquet circuits
of Anderson localization phases, the mutual informa-
tion is observed to be localized around the L/2 seg-
ment E as shown in Fig. 16. Again, consistent with
Anderson localization results with one-to-one encod-
ing, in the thermodynamic limit, the information will
be fully localized in the LA = L/2 subsystem, and
the steady state SIC gives 2 for any LA/L > 1/2.
Namely, the minimal subsystem size containing full
information MI = 2 is nearly fixed as LA = L/2 + ξ
and this critical size approaches LA/L = 1/2 in the
thermodynamic limit.

4 Results for Hamiltonian dynamics
In this section, we shift our focus to Hamilto-
nian quench dynamics described by one-dimensional
fermionic systems. We investigate information dy-
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Figure 16: Steady-state SIC in 1D random Clifford Floquet
circuit with different subsystem sizes LA under finite rate en-
coding scheme that encodes L/2 Bell pairs with L/2 ancilla
qubits at the beginning. The results are averaged over 400
configurations.

namics in non-equilibrium phases utilizing AA model
and SSH model, respectively.

One representative example we investigated is the
Aubry-André model without or with many-body in-
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teractions [84–89]. This model is well-known for its
Anderson localization (many-body localization) phase
and extended (thermal) phase in non-interacting (in-
teracting) cases. The Hamiltonian of the AA model
reads as:

H =J
L∑

j=1
(c†

j+1cj + h.c.) + U

L∑
j=1

njnj+1

+
L∑

j=1
Vjc

†
jcj , (26)

where cj represents the spinless fermionic annihila-
tion operator on site j, and nj = c†

jcj is the fermion
density operator on site j. For AA model, Vj =
2w cos(2παj + θ), where θ is the random phase to
be averaged, α is an incommensurate wavevector for
quasiperiodicity and we take α =

√
5−1
2 throughout

the work. In the non-interacting case U = 0, the
Anderson localization transition is known analytically
via a dual mapping from real space to momentum
space at wc/J = 1. With interaction U > 0, we can
obtain wc numerically for a many-body localization
(MBL) transition.

Besides, we also investigate information dynam-
ics for the case with potential Vj = C as a site-
independent constant. The model in Eq. (26) remains
interacting but becomes integrable as it is equivalent
to XXZ+Z model.

We also investigate the interplay between informa-
tion and topological properties [90], where SSH model
is utilized [91]:

H = −
L∑

j=1
(1 − (−1)j∆)c†

jcj+1 + h.c. (27)

For ∆ < 0 (∆ > 0), the system is topological (trivial)
exhibiting (no) edge states under open boundary con-
ditions. Through these Hamiltonian models, we aim
to unravel the intricate relationships between infor-
mation dynamics, localization phenomena, and topo-
logical features.

Unlike the random circuit case, where the ap-
plied local unitaries are generic without any symme-
try or conservation laws, the Hamiltonians investi-
gated in this section are U(1) symmetric and thus fol-
low charge conservation. U(1)-symmetric evolution
often gives rise to a spectrum of novel phenomena
that are distinct from those in generic evolution with-
out any conservation laws. Examples include OTOC
[52, 53], Rényi entanglement growth [92–95], symme-
try restoration [96], and measurement-induced charge
sharpening transitions [97].

In this section, we focus on the one-to-one encoding
scheme and von Neumann entropy based mutual in-
formation. Notably, fermionic GHZ states generated
by one-to-all encoding are beyond Gaussian states and

thus cannot be simulated by Gaussian state simula-
tors for large-size systems even the evolution Hamil-
tonian itself is quadratic (see Appendix E). It is worth
noting that in U(1) symmetric systems, Rényi en-
tropy can show different dynamical behaviors (diffu-
sive growth) than the von Neumann entropy (ballis-
tic growth). We leave the information dynamics de-
scribed by Rényi mutual information and Holevo in-
formation as an interesting future direction to explore.

4.1 Quasiparticle picture for SIC dynamics in
non-interacting Hamiltonians
The entanglement growth in noninteracting and in-
tegrable systems following a quench can be success-
fully explained by the intuitive quasiparticle picture
[14, 17, 98, 99]. The quasiparticles of the quenched
Hamiltonian are formed in pairs or multiplets and
uniformly distributed in space. These quasiparticles
move ballistically with the speed determined by the
dispersion relations and there is no interaction be-
tween different momentum species of quasiparticles.
Specifically, only quasiparticle pairs of momentum ±k
with one residing on intervals A and the other residing
on its complementary Ā contribute to the entangle-
ment entropy SA one unit sk. Here sk is the entropy
unit sk = −nk lognk − (1 − nk) log(1 − nk) where nk

represents the quasiparticle density for momentum
k. For Néel initial states and the XX Hamiltonian
which is equivalent to free fermion hopping model,
nk = 1/2 for all quasiparticle momentum k with the
velocity for quasiparticle as vk = ∂εk/∂k = −2 sin k
and entropy unit sk = 1 in the log2 base. The intro-
duction of onsite disorder renders fermion operators
of different momentum coupled, which is evident in
Fourier transformed Hamiltonian in momentum space
as

∑
k,k′ µ(k − k′)c†

kck′ . Therefore, the onsite disor-
der leads to strong scattering between quasiparticles
of different momentum, slowing down and invalidat-
ing the ballistic transport of quasiparticles.

In terms of the SIC investigated in this work, we
can still apply the quasiparticle picture framework
to understand the information dynamics in the non-
interacting system in the clean limit. We denote
QAB =

∫
x∈A,x′∈B

dk
2π sk as the effective number of

quasiparticle pairs with one quasiparticle in region
A and the other in region B. In the context of XX
quenched Hamiltonian with Néel initial state, each
pair of quasiparticles carry the entanglement in one
unit sk = 1. Consequently, the entanglement of
some region A is reduced to the number of effective
quasiparticle pairs separated between A and Ā, i.e.
SA = QAĀ. For the one-to-one encoding scheme em-
ployed in this section, we have:

SA = QAR +QAĀ (28)
SAR = QĀR +QAĀ (29)
SR = QAR +QĀR. (30)
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Given that SR = 1 holds for unitary dynamics con-
sidered here, we have:

I(A : R) = SA + SR − SAR = 2QAR, (31)

which relates the subsystem information capacity
with the number of effective quasiparticle pairs sepa-
rated in A and R.

At time t = 0, we have QAĀ(t = 0) = QĀR(t =
0) = 0 implying QAR(t = 0) = 1 based on the initial
entropies in the initial product state with one-to-one
encoding. Consequently, the SIC at any subsequent
time t is determined by QAR(t), i.e. the only rel-
evant part is the propagation to region Ā of initial
quasiparticles starting from the entangled qubit E,
which is paired with the counterpart in R as counted
in QAR(t = 0) = 1. This can be quantitatively calcu-
lated as

QAR(t) = 1 −
∫

|(L/2+2 sin(k)t) mod L−L/2|>LA/2

dk

2π
(32)

for our specific Hamiltonian and initial states. Essen-
tially, we simply count the number of quasiparticles
of different velocities that go outside the interval A
starting from E. The quasiparticle picture for SIC in
our settings is summarized in Fig. 17(a).

4.2 Results for non-interacting Hamiltonians
In this subsection, we focus on the results of the non-
interacting AA model (U = 0). The model in Eq. (26)
has an analytical exact critical point separating the
Anderson localization and extended phases at wc = J
[84, 85].

In the absence of quasiperiodic potential, i.e. w =
0, the results can be interpreted by the quasiparticle
picture as described above. As shown in Fig. 17(b),
the theoretical prediction based on the quasiparticle
picture is qualitatively in agreement with the numer-
ical results. The deviating time from the MI = 2
plateau happens at t∗ = LA/(2vmax) where vmax is
the maximal speed of quasiparticles as maxk 2 sin k =
2. After t∗, the fastest quasiparticle from E begins to
leave the interval A, leading to the decline in SIC. Ad-
ditionally, the finite size system with periodic bound-
ary conditions renders the oscillation of SIC dynamics
in the clean limit w = 0 when the quasiparticle picture
is valid without scattering between different species.
The oscillation behavior is similar as reported in [100]
where the quasiparticles can go around the system
and get back to the interval A in late times. It is
important to note that the presence and absence of
oscillation behaviors and the exact periodicity for the
oscillation both depend on the quasiparticle disper-
sion relations ϵk. Our results here are determined by
the free fermion dispersion ϵk ∝ cos k. Investigat-
ing the (non)oscillation behaviors for other dispersion

t

AĀ Ā

R

(a)

(b)

Figure 17: (a) Schematic representation of the quasiparticle
picture for mutual information I(A : R). (b) SIC dynamics
for I(A : R) with J = 1, U = 0, L = 80, w = 0 for the model
defined in Eq. (26) with periodic boundary conditions. Initial
deviating time t∗ = LA/(2∗vmax). And oscillation frequency
is given by vmax/L. Dotted lines represent predictions from
the quasiparticle picture, while solid lines show results from
free fermion dynamics simulation.

relations presents a promising avenue for future re-
search.

When the quasiperiodic potential is turned on,
quasiparticles scatter with each other of different mo-
mentum, which will slow down the information dy-
namics – SIC decay is slower at early times and the
steady state has higher SIC compared to the clean
limit with the same subsystem size. Furthermore, the
dynamics are smooth with no obvious oscillation be-
haviors observed in w = 0 case. For large quasiperi-
odic potential w > wc, the information spreading is
fully frozen in the thermodynamic limit due to the
strong scattering of quasiparticles, namely, quasipar-
ticles and the information they carry gets localized
due to strong scattering induced by the quasiperi-
odic potential. The dynamics with varying potential
strengths w is shown in Fig. 18. For different LA, the
deviating time from MI = 2 plateau, as described
by t∗ = LA/(2vmax), differs accordingly, akin to the
clean limit. This phenomenon can be attributed to
the presence of a subset of the fastest quasiparticles
that fortuitously evade scattering as they propagate
through the subsystem A, thus leaving the same de-
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viation time t∗ for different w with the same LA.
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Figure 18: SIC dynamics of different quasiperiodic potential
strength w with J = 1, U = 0, L = 80 for model in Eq.
(26) with periodic boundary conditions. (a) Subsystem size
LA = L/3. (b) Subsystem size LA = L/2. (c) Subsystem
size LA = 2L/3.

The late-time steady-state behavior for the SIC
I(A : R) is given in Fig. 19. For the clean limit w = 0,
the late-time SIC forms a straight diagonal line, indi-
cating a uniform spatial distribution of the initial in-
formation at late times. A slightly larger w will make
the line bend towards the upper left. After reaching
Anderson localization phases w > wc, the SIC main-
tains the value 2 for any LA/L > 0 in the thermo-
dynamic limit. The curves for different system sizes
converge in Anderson localization phases as shown
in the inset of Fig. 19, reflecting the system size-
independent nature of the localization length. This is
similar to the Anderson localization phase in the ran-
dom Clifford Floquet circuit. We further investigate
the initial state dependence of SIC by simulation on
dynamics from different initial states such as bipartite
state and random product states as shown in Fig. 20.
These results compare the late-time averaged SIC for

different initial product states under the same Hamil-
tonian dynamics. Our findings indicate that while the
numerical values of SIC can show some variation, the
qualitative features, such as the spatial patterns of
information distribution and the distinction between
different dynamical phases, remain robustly consis-
tent across different initial states. This supports the
utility of SIC as a probe of the system’s fundamental
dynamical characteristics.
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Figure 19: Steady-state SIC for the model defined in Eq. (26)
with J = 1, U = 0, L = 80 and periodic boundary conditions
for different w. Inset: Blue lines show results of w = 0.3
(extended phase), while red lines show results of w = 2.5
(localized phase). In Anderson localization phase, different
curves of different sizes coincide with LA as the x-axis.

The results for the free Hamiltonian in the extended
phase can be further understood via a specific type
of random quantum circuits, known as swap circuits.
The circuit is composed of brickwall two-qubit gates
with each gate being randomly selected to be either
an identity or a swap operation. In this setup, the
local information encoded initially always remains in-
herently localized, and only the position of the infor-
mation can be changed via the swap gate. When con-
sidering the average over different configurations of
swap circuits, the steady-state SIC will be a straight
line that is the same as w = 0 line in Fig. 19 and the
speed of configuration-averaged information propaga-
tion is determined by the probability of swap gates. In
sum, under the one-to-one encoding scheme, random
circuits composed of swap and identity gates generate
steady states with information distribution as given
by pattern (a) in Fig. 2. The classification regarding
subsystem information capacity for random quantum
circuits formed by a discrete set of random gates de-
serves further investigation.

4.3 Results for interacting Hamiltonians
In this subsection, we focus on the dynamics driven
by the interacting AA model. The exponential di-
mension of the quantum many-body Hilbert space
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Figure 20: Steady-state SIC for the model defined in Eq.
(26) with J = 1, U = 0, L = 200 and periodic boundary
conditions for different w. (a) Initial states for the dynamics
is bipartite product state |000...111..⟩, (b) SIC is averaged
over different random product state at half-filling sector.

limits our numerical investigation to systems of small
sizes. Moreover, the lack of an analytical framework
for information dynamics in generic many-body sys-
tems presents a challenge. Despite these limitations,
we present numerical results for these small systems
and offer some intuitive insights.

4.3.1 Thermal and many-body localization systems

Many-body localization is a novel non-equilibrium
phase that challenges the eigenstate thermalization
hypothesis [2]. Building upon Anderson localiza-
tion [101], the system can evade thermalization with
many-body interactions [102]. A variety of mecha-
nisms are proposed to stabilize MBL phases, including
strong random disorder [103–107], quasiperiodic po-
tentials [86–89, 108] and linear potentials [109–113].
As a fundamental basis for other emergent dynam-
ical phases such as discrete time crystal [114, 115]

and Hilbert space fragmentation [111, 112, 116], MBL
has been extensively explored on various experimen-
tal platforms of programmable quantum simulators
and quantum computers [117–120]. In this work, we
explore MBL phases through the lens of information
protection and information dynamics.

Numerous studies have explored information
scrambling in MBL systems, mainly using the probe
of OTOC [121–125] and TMI [126–128]. However,
these studies have not quantitatively determined the
late-time redistribution of information from local per-
turbations. In this work, we use the newly intro-
duced subsystem information capacity as the probe
to investigate the information dynamics in MBL sys-
tems. The results are anticipated to be very different
from Anderson localization cases since entanglement
growth in the two phases is very different (no growth
vs. logarithmic increase) [129, 130].
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Figure 21: SIC dynamics for model in Eq. (26) with
J = 1, U = 0.2, L = 14 with PBC (a) w = 0.3 (thermal
phase),(b) w = 4 (MBL phase). The dynamics at the initial
stage is similar to the non-interacting case owing to the Néel
configuration of the initial state. To capture the rapid vari-
ations at early time, we use a constant time step of dt = 1
for t < 10. For the later stages, to efficiently demonstrate
the exponentially slow convergence behavior, we employ an
exponentially increasing time step for t > 10.

The phase diagram of the interacting AA model is
determined in Appendix F with wc ≈ 1.4 ± 0.2 for
MBL transitions in our parameter regimes. The dy-
namical and steady-state SIC for different subsystem
sizes LA and different potential strengths w are de-
picted in Fig. 21 and 22, respectively. Regarding the
dynamics, we observe a logarithmic decay in SIC in
MBL phases, rendering a very slow saturation for the
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Figure 22: Steady-state SIC for model in Eq. (26) with
J = 1, U = 0.2 with PBC. The results showcase the late-
time SIC behaviors for thermal and MBL systems. Solid lines
represent results of L = 16, dashed lines represent results of
L = 14, while dashdot lines represent results of L = 12.

subsystem SIC as shown in Fig. 21(b). This loga-
rithmic dynamical scaling is consistent to the loga-
rithmic lightcone in MBL phases. Besides, the early
time dynamics for both thermal and MBL phases are
very similar to the non-interacting dynamics we re-
ported before. This fact is particularly evident in the
thermal region, where the SIC of a large subsystem
initially drops and then returns to values close to 2
given by information scrambling. The early-time re-
semblance to the non-interacting case is because the
density-density interaction plays no role at the be-
ginning stage due to the Néel configuration initial
states. Therefore, despite the steady-state chaotic be-
havior for thermal phases being predicted and shown
to be identical to the random quantum circuit case
in Fig. 4, the early-time information dynamics show
very different characteristics. In other words, in the
thermal phase, the information within a given sub-
system LA > L will first drop and then backflows to
the region with late-time convergence toward full in-
formation access MI = 2. Such information backflow
doesn’t occur in chaotic random circuits with one-to-
one encoding and is the unique early-time feature for
chaotic Hamiltonian evolution.

In thermal phases, the steady-state SIC distribu-
tion is step function like, which is the same as re-
ported in random quantum circuit cases, reflecting the
universal aspects of quantum chaos and information
scrambling. In MBL phases, the steady-state SIC is
different from those in Anderson localization phases
as anticipated. Albeit exponentially slow, informa-
tion can eventually propagate to the entire system in
MBL phases, resulting in MI(LA/L > 0) < 2 in late
times in the thermodynamic limit. On the contrary,
MI(LA/L > 0) is strictly 2 for Anderson localization
phases in the thermodynamic limit. The steady-state
SIC curve for large ratio LA/L appears to be approx-

imately linear although the precise form remains un-
clear due to the limitation of small-size simulations.

4.3.2 Integrable interacting systems

The nature of information scrambling in generic inter-
acting integrable systems remains mostly elusive [131–
133]. Some of these works provide hints of informa-
tion scrambling within integrable systems. We carry
out the information dynamics simulation on XXZ+Z
model, i.e. interacting AA model but with a uniform
magnetic field (Z terms in spin language). This model
is known as an interacting yet integrable system. The
information dynamics and the steady values of SIC are
shown in Fig. 23. Notably, the late-time behavior of
the integrable system exhibits striking similarities to
that of the chaotic systems, as observed in the ther-
mal phase or random quantum circuits. Moreover,
the time scale required for the integrable system to
reach the steady state, which is O(10), is significantly
shorter than that of the thermal case, which is O(100).
One possible explanation for the different equilibrium
time scales is that the small accessible Hilbert space in
integrable systems results in faster convergence. The
dimension of the Hilbert space for integrable systems
is very limited due to an extensive number of effective
conservation laws while thermal systems have expo-
nentially large charge sectors for L/2 occupation.

Based on our findings, we observe that while inte-
grable systems cannot thermalize, they can still sup-
port the chaotic-like information dynamics in real
space as we show here. This finding calls for a re-
assessment of the connection between complete in-
formation scrambling and thermalization. Further
studies are required to understand the difference be-
tween thermal and integrable systems concerning in-
formation dynamics. Additionally, given that non-
interacting AA model is also integrable but doesn’t
show chaotic behavior in steady-state SIC, it is also
imperative to categorize different types of integrable
systems regarding their late-time information distri-
bution.

4.4 Results for topological systems
The investigation on information scrambling in topo-
logical systems is limited and often restricted to the
calculation of OTOC [134–137]. In contrast, we in-
vestigate the interplay between information dynamics
and topology characteristics through the proxy of SIC
developed in this work, which provides fresh insights
into information perspectives of topological systems.
To explore the effect of topological edge states, we
utilize models with open boundary conditions in this
subsection.

The model we employed is one-dimensional SSH
model as introduced in Eq. (27). For ∆ < 0, the
system is in a topological phase with two edge modes
localized at two ends of the one-dimensional system.
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Figure 23: Model defined in Eq. (26) with J = 1, U =
0.2, L = 14 and PBC is utilized. The magnetic fields cor-
respond to uniform potentials, i.e. XXZ+Z model. (a) SIC
dynamics of different subsystem sizes LA. (b) Steady-state
SIC for different LA/L, the curve is similar to the thermal-
ization case in finite sizes.

Under the one-to-one encoding scheme, we investigate
cases where the entangled qubit E is situated either at
the boundary site or within the bulk. The latter case
gives similar behavior as the non-interacting model in
the extended phase. However, the former case yields
highly non-trivial results due to the information con-
finement nature of the topological edge modes.

Information dynamics results in topological phases
∆ = −0.4 and trivial phases ∆ = 0.4 are shown in
Fig. 24 and 27, respectively. Interestingly, in the
topological phase, a substantial portion of the infor-
mation remains trapped near the edge forever, at least
for the non-interacting case here. In interacting topo-
logical systems, such information trapping behavior
might be accompanied by a finite lifetime [134].

The information trapping phenomena near the
boundary of topological systems can be attributed to
the localized eigenmodes, i.e. topological edge states.
Localized modes can both suppress the entanglement
growth and trap the information spreading. The for-
mer is validated in Fig. 25 where only steady-state en-
tanglement defined near the boundary in topological
phases is greatly suppressed compared to the saturat-
ing value 1. In the language of quasiparticle picture,
there are a portion of quasiparticles trapped within
the localized mode which leads to both small steady-
state entanglement and information confinement.

With LA as the x-axis, late-time SIC curve collapses
well near the edge for different system sizes, indicat-
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Figure 24: Model defined in Eq. (27) with ∆ = −0.4 (topo-
logical phase) with open boundary condition is utilized. The
entanglement qubit E is chosen at one of the spatial bound-
aries. (a) SIC I(A : R) dynamics of different subsystem sizes
LA and different time t, L = 80. (b) Late-time averaged SIC
for different LA/L with L = 80, 160.
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Figure 25: Entanglement growth with quench Hamiltonian
defined in Eq. (27) with open boundary condition. The
subregion A is selected as one qubit on the boundary or in
the bulk. The initial state is Néel state. The results SA(t) for
A as one qubit at the spatial boundary in topological phase
(∆ = −0.4, TP_edge), one qubit in the bulk in topological
phase (TP_bulk), one qubit at the spatial boundary in trivial
phase (∆ = 0.4, Trivial_edge), and one qubit in the bulk in
trivial phase (Trivial_bulk) are presented.

ing that the information trapping is fully controlled by
the wavefunction of the edge states, irrespective of the
total system size as long as the tunneling can be safely
ignored. The fraction of information trapped near the
edge is thus independent of the system size L and can
be approximately captured by the amplitude of edge
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Figure 26: Late-time averaged SIC I(A : R) for different
LA/L (L = 80) with ∆ range from −0.1 to −0.9 for model in
Eq. (27) (topological phase) with open boundary conditions.
We utilize one-to-one encoding with the entangled qubit E
at the boundary of the one-dimensional system. The green
dotted line is from theoretical predictions where the height is
given by ⟨ψ|n0|ψ⟩edge with respect to the relative localization
length ξloc/L = 2/ ln 1−∆

1+∆/L for different ∆s. The theoreti-
cal green line successfully captures the turning points of the
information distribution near the information-trapping edge.
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Figure 27: Model defined in Eq. (27) with ∆ = 0.4 (trivial
phase) with open boundary condition is utilized. L = 80.
The entanglement qubit is chosen at one of the spatial
boundaries. (a) SIC I(A : R) dynamics of different sub-
system sizes LA and different time t. (b) Late-time aver-
aged SIC for different LA/L, the result is the same as fully
extended phases given in Fig. 19.

modes on the boundary site, equivalent to the density
expectation ⟨ψ|n0|ψ⟩edge. In summary, the spatial

content and magnitude of information trapping are
captured by the localization length ξloc = 2/ ln 1−∆

1+∆
and the edge density ⟨ψ|n0|ψ⟩edge, respectively. This
theoretical understanding indicated as green dotted
line, together with late-time information distribution
from different Hamiltonian parameter ∆s, is shown in
Fig. 26. The green dotted line indeed successfully
captures the turning point of the information curves
with different ∆s due to the edge modes. Away from
the edge, the late-time information distribution is uni-
form, which is the same as the extended case, result-
ing in a range of small-slope straight lines as shown
in Fig. 24(b).

On the contrary, in topological trivial phases, there
is no information trapping on the edge, and the
steady-state SIC curve is the same as trivial non-
interacting extended states (pattern (a) in Fig. 2). It
is also interesting to note that the information now
propagates and reflects at both edges due to open
boundary conditions. The velocity for the informa-
tion spreading is consistent with the maximal speed
given by the SSH Hamiltonian spectrum maxk

dεk

dk =
2(1−|∆|) (vmax = 1.2 for ∆ = ±0.4). For topological
trivial systems without edge modes, the quasiparti-
cle picture can still successfully apply to the informa-
tion dynamics by considering the reflection of quasi-
particles at both open boundaries [138], the numeri-
cal results comparing the dynamics with quasiparticle
picture predictions in topological trivial systems are
given in Appendix G.

The results presented in this subsection not only
extend the scope of information dynamics to the con-
text of topological systems but also demonstrate that
the position of entangled qubit E can strongly affect
the resulting information dynamics in open bound-
ary or spatial non-uniform systems. Leveraging this
insight, the subsystem information capacity can be
employed as a tool to investigate spatial singularities
within the system by varying the position of the en-
tangled qubits.

5 Discussions
In this work, we propose the use of subsystem infor-
mation capacity I(A : R) between the output sub-
system A and the reference system R as a metric
to characterize information dynamics and information
capacity for the system, or specifically for the effective
quantum channel formed by the subsystem of evolu-
tion. The dynamical and steady properties of SIC
successfully reveal the intrinsic nature of different dy-
namical phases. This metric is also closely related to
quantum information processing and quantum com-
munication, owing to its relationship with quantum
coherent information.

Our settings are different from the conventional
TMI settings where all the system qubits are entan-
gled with corresponding reference qubits. Conversely,
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all qubits in Ē are initialized with pure states in our
case. On the one hand, our settings save a great num-
ber of qubits (L+ 1 in one-to-one encoding case) and
are thus much more friendly for noisy intermediate-
scale quantum experiments [139]. On the other hand,
the results in our settings rely on the choice of the
initial states in some cases. For random quantum cir-
cuit evolution, the choice of different product initial
states is irrelevant as the difference is smeared out by
the first layer of random gates. Instead, the results
can be different for different initial states in Hamil-
tonian quench dynamics. In charge conserved evolu-
tion, different choices of the initial states correspond
to different charge sectors of different Hilbert space
dimensions, which can result in very different behav-
iors [96]. For different initial states within the same
charge sector, the difference is less known. Therefore,
it deserves further investigations into the difference
in information dynamics from different initial states,
particularly in the case of symmetric evolution.

For U(1) symmetric dynamics, the dynamics of mu-
tual information characterized by von Neumann en-
tropy and Rényi entropy could be drastically different.
This is because Rényi entropy growth shows subdif-
fusive behaviors for systems with conservation laws
while von Neumann entropy always exhibits ballistic
growth [72, 92, 93, 95]. In our work, we focus on
von Neumann entropy based mutual information for
Hamiltonian dynamics. The dynamical behaviors for
Rényi mutual information in these systems as well as
the interplay between other symmetries with informa-
tion dynamics require further investigation.

As previously noted, the framework for information
dynamics established within this work is amenable
to noisy intermediate-scale quantum [139] technology
and is thus well-suited for implementation on near-
term quantum computing platforms. Specifically, our
settings are more qubit efficient than measuring TMI
and are free from Pauli operator average and reversal
evolution than measuring OTOC. Given that A and
R both being small regions comprising a few qubits,
the von Neumann or Rényi entropy for these subsys-
tems can be obtained either via full state tomogra-
phy or random basis measurement [140–142]. Apart
from experiments on quantum hardware, an interest-
ing theoretical future direction is to analyze the im-
pact of different types of quantum noise on these set-
tings utilizing statistical model mapping. This could
lead to the identification of noise-resilient experimen-
tal protocols for the implementation of information
dynamics. It is also worth noting that random cir-
cuit structures utilized in this work are helpful in al-
leviating coherent quantum noises and demonstrating
quantum advantages [143].

This work concentrates on one-dimensional sys-
tems, and we expect that higher-dimensional systems
have the potential to exhibit a broader range of be-
haviors in information dynamics. There are also more

possible geometry configurations to arrange E and
A regions which could lead to a richer understand-
ing of information propagation and scrambling. An-
other limit is to apply information metrics developed
in this work to zero-dimensional systems with all-to-
all interactions such as SYK models [144–146], which
yield faster information scrambling and are analyti-
cally tractable in the large N limit.

Apart from its implications for non-equilibrium
physics, SIC and a deeper understanding of infor-
mation dynamics can also be helpful and insightful
for designing and benchmarking quantum algorithms,
particularly in the context of variational quantum al-
gorithms [147, 148]. Promising examples along this
direction include understanding the training dynam-
ics and learning capability for variational quantum
machine learning algorithms from information per-
spectives [149–151]. Besides, it is inspiring to de-
velop better circuit ansatz design [152–156], param-
eter initialization [157, 158] and training strategies
[159] with enhanced expressive power and alleviated
barren plateau issues [160] by leveraging the principles
of non-equilibrium dynamics and information spread-
ing.

Acknowledgements
We thank helpful discussions with Zhou-Quan Wan
and Shuai Yin. YQC acknowledges the support by
NSAF No. U2330401. SXZ acknowledges the support
from Innovation Program for Quantum Science and
Technology (2024ZD0301700) and the start-up grant
at IOP-CAS.

A Relation between subsystem infor-
mation capacity and out-of-time corre-
lators
The established relation between mutual information
and average OTOC over local Pauli operators [26] can
be similarly extended to our case:

2−2|Ā|−2|R|
∑

Pi∈E,Pj∈Ā

Tr
(
(Pj(t)(Pi ⊗ |i⟩⟨i|Ē))2)

= 2|R|−|Ā|−S
(2)
AR , (33)

where Pi ∈ E implies that the sum is over all possible
Pauli operators that are nontrivial on qubits in the
interval E. The input of the system is divided into
regions E and Ē, where qubits in E form Bell pairs
with qubits in the reference system R. The output
of the system is divided into regions A and Ā, and in
general |A| ≠ |E|.

The left-hand side of Eq. (33) is similar to the no-
tation of averaged OTOC over local Pauli operators,
but now the zero time operator is replaced with local
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Figure 28: (a) Operator identity: the diamond pairs indicate
twirling the operator O with all possible Pauli operators, i.e.∑

i
PiOPi. (b) The reduced density matrix ρAR by partial

tracing freedom in Ā. (c) The tensor network schematic
proof for Eq. (33). The grey triangle is for the pure input
state in the subsystem Ē: |i⟩Ē .

Pauli operator product with the initial state projec-
tor on the remaining system Ē. The Rényi-2 entropy
for ρAR on the right-hand side of Eq. (33) is closed
related to the Rényi-2 mutual information I(2)(A : R)
focused in this work.

The schematic proof based on tensor network rep-
resentation is shown in Fig. 28. For the tripartite mu-
tual information setting in Ref. [26], the initial state
projectors (grey triangles in Fig. 28) are replaced with
direct links in pairs since the input state is a fully
mixed state for each qubit. In that case, we repro-
duce the equivalence between Rényi-2 entanglement
entropy with the conventional OTOC for local Pauli
operators, unlike the introduction of projectors for the
pure initial state in our settings.

B Relation between quantum mutual
information and Holevo information
The two information quantities are equal under the
condition TrĀ(|ψ(1)

0 ⟩⟨ψ(2)
0 |) = 0. In this Appendix,

we demonstrate the equivalence. With the introduc-
tion of one single ancilla qubit as 1√

2 (|0⟩R|ψ(1)
0 ⟩ +

|1⟩R|ψ(2)
0 ⟩), the reduced density matrix on AR is given

by

ρAR = 1
2 |0⟩⟨0|TrĀ(ρ1) + 1

2 |1⟩⟨1|TrĀ(ρ2), (34)

where ρi = |ψ(i)
0 ⟩⟨ψ(i)

0 |. Note that the crossing term
like |0⟩⟨1|TrĀ(|ψ(1)

0 ⟩⟨ψ(2)
0 |) is zero only under the given

condition. We thus have

SAR = −TrAR(ρAR log ρAR) = 1
2(SA(ρ1) + SA(ρ2)) + 1.

(35)

Since we have already shown that the first term of
Holevo information is equivalent to SA with the ref-
erence qubit, we arrive at:

χA = SA − 1
2(SA(ρ1) + SA(ρ2))

= SA + 1 − SAR = I(A : R). (36)

For the one-to-all encoding scheme, the condition
TrĀ(|0L⟩⟨1L|) = 0 is satisfied, resulting in the same
initial value 1 for both mutual information and Holevo
information. On the contrary, the condition is gener-
ally not satisfied when states |ψ(i)

0 ⟩ differ only in the
local region E, as is the case for one-to-one encoding.

C Mapping between random quantum
circuits and effective statistical models
The random quantum circuits under investigation are
constructed from a sequence of random two-qudit uni-
tary gates, each sampled from the Haar ensemble and
arranged in a brickwall layout, as depicted in Fig.
1(a). In this study, we adhere to the convention of
defining the unit time ∆t = 1 for an even-odd layer of
two-qudit gates. This convention implies a lightcone
speed of v = 2, which differs from some literature
where ∆t = 1 is associated with a single even or odd
brickwall layer. After T layers of gates, the output
density matrix ρ is given by

ρ =
T∏

t=1
Ũtρ0Ũ

†
t , (37)

where ρ0 is the density matrix of the initial state, and

Ũt =
L−2

2∏
i=0

Ut,(2i+2,2i+3)

L−2
2∏

i=0
Ut,(2i+1,2i+2), (38)

is the unitary evolution at time step t. To obtain
the von Neumann entropy of the subsystem for the
output state, we can first express the density matrix
in an r-fold replicated Hilbert space:

|ρ⟩⊗r =
T∏

t=1

[
Ũt ⊗ Ũ∗

t

]⊗r |ρ0⟩⊗r. (39)

The mapping to the effective statistical model is
given by the average over Haar random two-qudit uni-
tary gates U :

EU (U ⊗ U∗)⊗r =
∑

σ,τ∈Sr

Wg(r)
d2 (στ−1)|ττ⟩⟨σσ|, (40)
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where Sr is the permutation group of degree r, d is
the local Hilbert space dimension of qudits, and Wg(r)

d2

is the Weingarten function with an asymptotic expan-
sion for large d as [75, 78]:

Wg(r)
d2 (σ) = 1

d2r

[
Moeb(σ)
d2|σ| + O(d−2|σ|−4)

]
. (41)

Here |σ| is the number of transpositions required to
transform from the identity permutation spin I to σ.
By averaging all two-qudit gates independently, the
quantum circuit is effectively transformed into a clas-
sical spin model, where the degrees of freedom are
formed by permutation-valued spins σ and τ on a hon-
eycomb lattice.

The partition function Z for this statistical model
composed of permutation spins is obtained by sum-
ming the total weights of all possible spin configura-
tions. For a given spin configuration, the weight is
the product of the bond weights on the diagonal and
vertical bonds on the honeycomb lattice. The weight
of the diagonal bond is given by the inner product be-
tween two diagonally adjacent permutation spins (be-
tween two two-qudit gates in neighboring layers and
neighboring positions in the original circuit language)

wd(σ, τ) = ⟨σ|τ⟩ = dr−|σ−1τ |, (42)

and the weight for the vertical bond (within one two-
qudit gate in the original circuit language) is given
by the Weingarten function. Besides, mid-circuit
measurements can be treated as quenched disorder
[64, 65], and the diagonal bond with the measure-
ment gives a weight contribution factor d0. However,
the partition function is ill-defined due to the negative
weighted configurations since Moeb(σ), the Moebius
number of σ, can be negative [78]. To obtain positive
definite weights and properly defined partition func-
tion for the statistical model, we integrate out half of
the freedoms (all τ spins) and obtain positive three-
body weights of downward triangles as

W 0(σ1, σ2;σ3) =∑
τ∈Sr

Wg(r)
d2 (σ3τ

−1)d2r−|σ−1
1 τ |−|σ−1

2 τ |. (43)

After tracing out τ , the total weight of a given spin
configuration is the product of the weights of all the
downward triangles on the space-time lattice of the
circuit. In the large d limit, we focus on the most dom-
inant spin configuration of the largest weight, namely,
the partition function Z is determined by the weight
of the dominant spin configuration. A finite d such as
d = 2 in qubit case introduces interactions between
different replicas and a more general entanglement
membrane picture is required as discussed in Sec. 3.1.

The statistical model is ferromagnetic since the
weights of the downward triangles with specific spin
configurations asW 0(σ, σ;σ) ≈ d0 andW 0(σ′, σ;σ) ≈

d−|(σ′)−1)σ| < 1. Therefore, the spin-spin interaction
in the effective model is ferromagnetic, and all the
spins tend to align in the same direction. However, as
discussed below, due to the particular boundary con-
ditions, domain walls may appear, with the unit free
energy of log W 0(σ′, σ;σ) for unit length. It is also
worth noting that the weight W 0(σ, σ;σ′) = 0 due
to unitary constraint [79, 80]. Consequently, the do-
main wall in the random unitary circuit is precluded
from exhibiting horizontal configurations or upward
triangular turning points. However, the presence of
mid-circuit measurements and quantum noises [66]
can relax the unitary constraint, thereby enabling the
emergence of such domain walls. These non-unitary
factors introduce a new layer of complexity and ver-
satility to the quantum circuit, potentially giving rise
to a richer variety of dynamical behaviors.

Now, we utilize the fact that the von Neumann en-
tropy Sα is n = 1 limit for Rényi-n entropy

Sα = lim
n→1

S(n)
α = lim

n→1

1
1 − n

EU log tr ρn
α

(tr ρ)n
, (44)

where ρα is the reduced density matrix of region α

and S(n)
α is the n-th order Rényi entropy. Via the sta-

tistical model mapping introduced above, we express
S

(n)
α in n-fold replicated Hilbert space as

S(n)
α = 1

1 − n
EU log tr ρn

α

(tr ρ)n

= 1
1 − n

EU log Tr((Cα ⊗ Iᾱ)ρ⊗n)
Tr((Iα ⊗ Iᾱ)ρ⊗n)

= 1
1 − n

EU log Z
(n)
α

Z
(n)
0

, (45)

where C =
(

1 2 ... n
2 3 ... 1

)
and I =

(
1 2 ... n
1 2 ... n

)
for corresponding qudits, as the cyclic and identity
permutations in Sn group. With the help of the
replica trick [81, 82], we can overcome the difficulty
of the average outside the logarithmic function

EU logZ(n)
α = lim

k→0

1
k

logZ(n,k)
α , (46)

EU logZ(n)
0 = lim

k→0

1
k

logZ(n,k)
0 ,

where

Z(n,k)
α = Tr

{
Cα ⊗ Iᾱ

[
EUρ

⊗nk
]}
, (47)

Z
(n,k)
0 = Tr

{
Iα ⊗ Iᾱ

[
EUρ

⊗nk
]}
,

with C =
(

1 2 ... n
2 3 ... 1

)⊗k

and I =(
1 2 ... n
1 2 ... n

)⊗k

are permutations in the r-fold

replicated Hilbert space with r = nk. Therefore,

Sα = lim
k→0
n→1

1
k(1 − n) log

{
Z

(n,k)
α

Z
(n,k)
0

}
, (48)
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where Z is the partition function for the classical spin
model via the mapping, and it corresponds to the
weight of the dominant spin configuration of the fer-
romagnetic spin model with particular top boundary
conditions in the large d limit: Cα ⊗ Iᾱ for Zα and
Iα ⊗ Iᾱ for Z0.

In the language of the effective statistical model,
Sα is represented as the free energy difference:

S(n,k)
α = 1

k(n− 1)

[
F (n,k)

α − F
(n,k)
0

]
. (49)

We note that the free energy F (n,k) is proportional
to the length of the domain wall with unit energy
k(n− 1), and thus 1

k(n−1)F
(n,k) is independent of the

index (n, k) in the large d limit. Last but not least, the
above discussion has assumed that the initial state is
a product state, which imposes a free bottom bound-
ary condition in the language of the effective statisti-
cal model. For different input states beyond product
states, we have to figure out the bottom boundary
conditions by calculating the overlap between differ-
ent spin configurations and the input state ρ0, such
as computing the boundary weight contribution from
Tr(Cαρ0).

D Experiment protocol advantage for
measuring SIC
Beyond its theoretical utility in characterizing quan-
tum dynamics, SIC framework often presents signif-
icant practical advantages in terms of experimental
implementation compared to other common informa-
tion scrambling probes like OTOC and TMI. Here,
we elaborate on these advantages, with the schematic
protocols illustrated in Fig. 29.

A primary advantage of SIC measurement lies in
its reduced circuit complexity regarding time evolu-
tion. As depicted schematically in Fig. 29(a), stan-
dard methods for measuring OTOCs typically require
executing both the forward time evolution U and the
backward time evolution U†. Implementing U† accu-
rately can be experimentally demanding, often requir-
ing precise knowledge and decomposition of U . The
implementation doubles the circuit depth for gate-
based evolution, or necessitates fine-tuned pulse re-
versal in analog systems. This increased complexity
increases susceptibility to quantum noise and deco-
herence.

Measuring TMI, on the other hand, often involves
preparing fully mixed initial states where the entire
system L is entangled with an equally sized reference
system (L). Such thermofield double states require
preparing and controlling 2L qubits in a highly en-
tangled state.

In stark contrast, the protocol for measuring SIC,
particularly the one-to-one encoding scheme predomi-
nantly used in this work, is shown in Fig. 29(b), which

Figure 29: Schematic comparison of experimental protocols.
(a) A typical measurement protocol for OTOCs, requiring
both forward (U) and backward (U†) time evolution. The
figure is taken from Ref. [43] (b) Protocol for measuring SIC
(specifically MI(Qa, {Q1, Q2}) here), requiring only a single
forward time evolution (U) followed by subsystem entropy
measurements based on random measurement scheme [141].

fundamentally requires only a single application of the
forward evolution U and one ancilla qubit. After the
system evolves, the task reduces to measuring the nec-
essary subsystem entropies. This elimination of the
backward evolution step (U†) significantly simplifies
the quantum circuit, reduces the overall gate count or
evolution time, and consequently minimizes the accu-
mulation of errors.

Finally, the measurement step for SIC involves es-
timating subsystem von Neumann entropies (SA, SR,
SAR). And measuring entanglement entropy requires
randomized measurements, where we perform mea-
surements in multiple random basis on copies of the
evolved state. For a larger subsystem |A| > L/2,
we can measure the entanglement entropy of SRĀ in-
stead, to further reduce the measurement overhead,
since the whole system is closed.

In conclusion, the requirement of only single for-
ward evolution and the significantly reduced demand
on initial entanglement resources contribute to mak-
ing SIC a potentially more feasible, resource-efficient,
and robust probe of quantum information dynamics
on current quantum hardware platforms.

E Non-Gaussianity of fermionic GHZ
states
In this Appendix, we demonstrate that quadratic
Hamiltonian quench dynamics with the one-to-all en-
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coding scheme cannot be simulated with the large-
scale fermion Gaussian state simulator. In other
words, the fermionic GHZ state employed in the
one-to-all encoding scheme as given by |GHZ⟩ =

1√
2 (|0101 · · · ⟩ + |1010 · · · ⟩) in Fock space is beyond

Gaussian states. Multi-point correlations under
Gaussian states are known to follow Wick expansion.
By considering the multi-point correlator operator
as Ô = c†

0c1c
†
2c3 · · · , we have the expectation value

⟨GHZ|Ô|GHZ⟩ = 1/2. However, any term result-
ing from the Wick expansion of the operator, such as
c†

0c1, gives a zero expectation under GHZ state, i.e.
⟨GHZ|c†

0c1|GHZ⟩ = 0. Therefore, Wick expansion
does not hold for the expectation of Ô under fermionic
GHZ states, thereby establishing that these cat states
are not Gaussian states.

F MBL phase transitions in interacting
AA model
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Figure 30: Averaged level spacing ratio ⟨r⟩ for model defined
in Eq. (26) with J = 1, U = 0.2 and PBC, wc ≈ 1.4 ± 0.2
is estimated for the corresponding many-body localization
transition.

We determine the MBL transition for interacting
AA model with U = 0.2 as shown in Fig. 30. The
critical value of quasiperiodic potential strength wc ≈
1.4±0.2 is estimated from the finite size crossing of the
disorder averaged (phase θ average in quasiperiodic
potential case) level spacing ratio r, defined as:

r = 1
D − 2

D−2∑
i

min(δi, δi+1)
max(δi, δi+1) , (50)

where D is the Hilbert space dimension, δi = ϵi+1 −ϵi
is the energy level spacing between neighboring eigen-
energies ϵi for the interacting AA Hamiltonian defined
in Eq. (26).

G Quasiparticle picture of SSH model
In this Appendix, we provide further additional data
on the information dynamics in SSH model trivial
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Figure 31: SIC dynamics for I(A : R) with ∆ = 0.4 (triv-
ial phase), L = 80 for the model defined in Eq. (27) with
open boundary conditions. (a) One-to-one encoding with the
entangled qubit E at the boundary of the one-dimensional
system. Initial deviating time t∗ = LA/vmax. And os-
cillation frequency is given by vmax/(2L). (b) One-to-one
encoding with the entangled qubit E, positioned centrally
within the one-dimensional system. Initial deviating time
t∗ = LA/(2vmax). And oscillation frequency is given by
vmax/L. Dotted lines represent predictions from quasiparti-
cle pictures, while solid lines show results from free fermion
dynamics simulation based on SSH model. Despite the quasi-
particle picture firstly being formulated to describe the bulk
state behavior under periodic boundary conditions, it main-
tains a good prediction power for systems with open bound-
ary conditions, especially when entangled qubits are in the
bulk as shown in (b).

phases (∆ = 0.4) with open boundary conditions as
defined in Eq. (27). Due to the lack of edge modes,
SSH model in trivial phases can still be qualitatively
predicted by the quasiparticle picture. The differences
in the quasiparticle picture understanding from the
AA model are the quasiparticle energy spectrum now
is given by SSH model and the open boundary con-
ditions lead to the reflection of quasiparticles. The
information dynamics results are shown in Fig. 31
with the dotted line being predictions from the quasi-
particle picture. The two cases correspond to the en-
tangled qubit E on the boundary or in the bulk of the
one-dimensional SSH chain. The prediction and the
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simulation match better for E in the bulk due to less
boundary effect. We find that the periodicity for the
entangled qubit in the bulk is half as the entangled
qubit on the boundary as a result of different dis-
tances from E to the opposite boundary. Overall, the
quasiparticle picture works well for both positions of
the entangled qubit. However, the same quasiparticle
picture totally breaks down with topological phases
(∆ < 0), where localized edge modes are of great im-
portance which are beyond the information given by
the bulk energy spectrum.
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