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Differentiable programming has emerged as a key programming paradigm empowering rapid developments
of deep learning while its applications to important computational methods such as Monte Carlo remain largely
unexplored. Here we present the general theory enabling infinite-order automatic differentiation on expectations
computed by Monte Carlo with unnormalized probability distributions, which we call automatic differentiable
Monte Carlo (ADMC). By implementing ADMC algorithms on computational graphs, one can also leverage
state-of-the-art machine learning frameworks and techniques in traditional Monte Carlo applications in statistics
and physics. We illustrate the versatility of ADMC by showing some applications: fast search of phase transitions
and accurately finding ground states of interacting many-body models in two dimensions. ADMC paves a
promising way to innovate Monte Carlo in various aspects to achieve higher accuracy and efficiency.
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I. INTRODUCTION

Differentiation is a broadly important concept and a widely
useful method in subjects such as mathematics and physics.
Automatic differentiation (AD) evaluates derivatives of any
function specified by computer programs [1,2] by propagat-
ing derivatives of primitive operations via chain rules. It is
different from conventional symbolic differentiations by to-
tally avoiding complicated analytic expressions of derivatives
and is advantageous to numerical differentiations by totally
eliminating discretization errors. Besides, AD is particularly
successful in calculating higher-order derivatives and comput-
ing gradients with respect to large numbers of variables as in
the case for gradient-based optimization algorithms. Emerg-
ing as a new programming paradigm, AD is now extensively
utilized in machine learning. Being one of the most impor-
tant infrastructures for machine learning, it enables massive
exploration on neural network structures.

The great application potential of AD in fields beyond
machine learning started to emerge. Specifically, AD has
been applied to certain areas of computational physics; for
instance, its interplay with tensor networks was investigated
very recently [3–6]. One may naturally ask whether AD can
be leveraged in Monte Carlo (MC) methods, another big
family of computational algorithms. Initial investigations on
encoding MC methods into an AD framework [7] all as-
sumed normalized probability distributions for Monte Carlo
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sampling. However, for nearly all interesting problems the
normalization factor is not known a priori and the probability
distribution is usually unnormalized. Fortunately, knowing the
ratio of probabilities between different configurations is suffi-
cient to perform MC simulations in the Metropolis-Hasting
algorithm [8]; Monte Carlo with unnormalized probability
distribution is now a widely employed numerical approach
in statistics and physics. Consequently, it is highly desired
to integrate AD into generic Monte Carlo to achieve high
accuracy and efficiency in various MC applications such as
solving interacting many-body models in physics.

In this paper, we fill in the gap by proposing a general
theory enabling infinite-order automatic differentiation on
expectations computed by Monte Carlo with unnormalized
probability distributions, which we call automatic differen-
tiable Monte Carlo (ADMC). Specifically, ADMC employs
the method of AD to compute gradients of MC expectations,
which is a key quantity used in statistics and machine learning
[7], without a priori knowledge of normalization factor or
partition function, which is the case for nearly all application
scenarios in Markov chain Monte Carlo (MCMC). As the MC
gradient problem lies at the core of probabilistic programming
[9] and plays a central role in various fields including opti-
mization, variational inference, reinforcement learning, and
variational Monte Carlo (VMC), ADMC can be employed in
a wide range of MC applications to achieve high accuracy and
efficiency.

ADMC not only works with gradient of expectations in
MC with unnormalized distributions but also holds true for
higher-order derivatives of MC expectations. In contrast, MC
estimation of higher-order derivatives was rarely considered
[10]. In addition, ADMC can be embedded in general stochas-
tic computational graph [11] frameworks seamlessly and
plays a critical role in the interplay between differentiable
programming and probabilistic programming. By introduc-
ing ADMC, we can build Monte Carlo applications in the
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state-of-the-art machine learning infrastructure to achieve
high accuracy and efficiency in addressing questions such as
fast search of phase transitions and ground states of interacting
quantum models. For models we studied by ADMC, com-
parable or higher accuracy has been obtained by comparing
with previous methods such as restricted Boltzmann ma-
chine (RBM) and tensor networks. Moreover, ADMC paves
a promising way to innovate Monte Carlo in various aspects,
e.g., easing or solving the sign problem [12–21] of quantum
Monte Carlo (QMC) [22–26].

The organization of this paper is as follows. In Sec. II,
we review important background knowledge required to un-
derstand the general theory of ADMC and its applications,
including automatic differentiation, estimation on Monte
Carlo gradients, and variational Monte Carlo methods. In
Sec. III, we elaborate our theory towards ADMC, including
the detach function, ADMC estimator for normalized and un-
normalized probability distributions as well as general theory
on the Fisher information matrix (FIM) with unnormalized
probabilities, and the general theory for the AD-aware ver-
sion of VMC. In Sec. IV, we present two explicit ADMC
applications in physics: fast searching of phase transitions
and critical temperature in the two-dimensional (2D) Ising
model, and end-to-end general-purpose ADVMC algorithms
and accurately finding the ground state of the 2D quantum
spin-1/2 Heisenberg model. We demonstrate how to leverage
the power of state-of-the-art machine learning for ADMC
algorithms in particular. In Sec. V, we further discuss other
possible applications of ADMC as well as some outlooks on
ADMC.

II. BACKGROUND

In this section, we would like to provide some background
knowledge for the sake of being self-contained. Specifically,
we will introduce some basic knowledge of AD, Monte Carlo
gradient estimations, and variational Monte Carlo, which are
related to the general theory and applications of ADMC.

A. Automatic differentiation

Conventional methods of computing gradients of a given
function include symbolic and numerical approaches. It is
challenging to symbolically compute gradients of complicated
functions as deriving the analytical expression of the gradient
is often nearly impossible. A numerical differentiation ap-
proach computes the gradient by finite discretization and thus
normally suffers discretization errors. In addition, these two
conventional methods encounter more challenges or errors
in computing higher-order derivatives, especially when the
number of input parameters is large.

AD, on the contrary, by tracing the derivative propagation
of primitive operations via chain rules, can render numerically
exact derivatives (including higher-order derivatives) for any
programs [1,2,27]. The program is specified by a computa-
tional graph composed of function primitives. Such a directed
acyclic graph shows the data shape and data flow of the corre-
sponding program.

There are two ways to compute the derivative on the
graph with respect to the graph’s inputs: the forward AD and

(b)

(a)

FIG. 1. (a) Forward mode and (b) reverse mode automatic differ-
entiation on computational graphs. Black arrows label the forward
pass from inputs to outputs. Red arrows represent forward chain rules
in (a) and backpropagation for adjoints in (b).

backward AD. The forward AD iteratively computes the re-
cursive expression as shown in Fig. 1(a):

∂Ti

∂T0
=

∑
Ti−1∈parent{Ti}

∂Ti

∂Ti−1

∂Ti−1

∂T0
, (1)

where Ti stands for nodes on the computational graph; T0 is the
input and Tn the final output. The gradient we aim to obtain is
∂Tn
∂T0

. Here ∂Ti
∂Ti−1

corresponds to the derivatives of operator prim-
itives Ti = f (Ti−1), and these derivatives are implemented as
AD infrastructure built-in or user customizations. One draw-
back of the forward mode AD is that one needs to keep track
of every derivative ∂Ti

∂T0[i] in the middle of the graph when the
input has many parameters, which is normally expensive and
inefficient.

Reverse mode AD can avoid the inefficiency encountered
by forward mode AD when input parameters are far more than
output ones, which is the case for many applications including
machine learning and variational Monte Carlo. By defining
the adjoint as T i = ∂Tn

∂Ti
, as shown in Fig. 1(b), reverse mode

AD iteratively computes the recursive expression:

T i =
∑

Ti+1∈child{Ti}
T i+1

∂Ti+1

∂Ti
. (2)

The final aim is to compute T 0. In this approach of AD,
one first computes the output and saves all intermediate node
values Ti in the forward pass, and then backpropagates the
gradients in the reverse pass. This workflow, denoted as back-
propagation in machine learning language [28], is opposite to
the forward mode AD where all computations happen in the
same forward pass. Reverse mode AD is particularly suitable
for scenarios with multiple input parameters and one output
value, which is the case of most deep learning setups [29] and
many MC approaches such as variational Monte Carlo.

B. Gradients of Monte Carlo expectations

As explained in the Introduction, it is of great impor-
tance in various fields to compute gradients of Monte Carlo
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expectation values: ∇θ〈O(x, θ)〉p(x,θ), where θ represents the
set of input parameters, x labels MC configurations, p(x, θ)
is the (generally unnormalized) probability distribution, and
〈O(x, θ)〉p(x,θ) is the MC expectation value of O under the
probability distribution p(x, θ). We often call O the loss func-
tion. Currently, there are two main methods for evaluating MC
gradients: the score function estimator [30] (also denoted as
REINFORCE [31]) and the pathwise estimator (also denoted
as the reparametrization trick [32], stochastic backpropaga-
tion [33], or “push out” method [34]). Although the method
of pathwise estimation in general gives a lower variance for
MC gradient estimation, it can only be applied in quite limited
settings due to the strict requirements on the differentiability
of transformers and probability distributions. Therefore, it is
nearly impossible to apply a pathwise estimator to evaluate
MC gradients sampled from vastly complicated distributions
encountered in most physics problems. We thus focus on
the score function method in the present paper as it is more
universal and general purpose.

The score function estimator is a general-purpose MC gra-
dient estimator with gradient given by

∇θ〈O(x, θ)〉p =
〈
∇θO(x, θ) + O(x, θ)

∇θ p(x, θ)

p(x, θ)

〉
p

, (3)

where p is a shortcut for p(x, θ) that is normalized. Note that
Eq. (3) is quite general by taking into account the dependence
of the loss function O on the parameters θ. To leverage AD in
the gradient estimation, it is desired to construct an AD-aware
version of the MC expectation which can correctly obtain the
MC gradient itself and its derivatives to all orders (including
the gradients and all higher derivatives). For normalized prob-
ability distribution p, the following AD-aware version of the
MC expectation, 〈

O(x, θ)p(x, θ)

⊥(p(x, θ))

〉
p

, (4)

was proposed [10], where ⊥(·) represents that · does not prop-
agate gradients in the AD process (detailed explanations are
given in Sec. III). However, for nearly all interesting physics
problems, the normalization factor is not known a priori
and the probability distribution is usually unnormalized. It
is of central importance to sample from such unnormalized
probability distributions for applications such as computing
physical quantities without knowing the partition function a
priori or approximating the posterior distributions of latent
variables only with knowledge of likelihood and prior. Nev-
ertheless, MC gradient estimation from such unnormalized
probability distribution has not been constructed by any pre-
vious method. In Sec. III of the present paper, we develop a
general framework and construct the AD-aware objective MC
expectation which can correctly obtain both the expectation
value and all its higher-order derivatives for unnormalized
probability distributions.

C. Variational Monte Carlo in physics

VMC is a powerful numerical algorithm searching the
ground state of a given quantum Hamiltonian based on the
variational principle since a physical Hamiltonian has energy
bounded from below [35,36]. By sampling the amplitude of

variational wave function |ψθ〉, where θ represents the set
of variational parameters, one can compute the energy ex-
pectation Eθ = 〈ψθ|H |ψθ〉/〈ψθ|ψθ〉, where the ansatz wave
function |ψθ〉 is in general not normalized. The energy expec-
tation can be evaluated through MC:

Eθ =
∑

σ p(σ, θ) 〈σ |H |ψθ〉
〈σ |ψθ〉∑

σ p(σ, θ)
= 〈Eloc(σ, θ)〉p(σ,θ), (5)

where Eloc(σ, θ) = 〈σ |H |ψθ〉
〈σ |ψθ〉 , σ is complete basis of the quan-

tum system’s Hilbert space, and p(σ, θ) = |〈σ |ψθ〉|2 is the
probability distribution. Note that the probability distribution
p(σ, θ) is in general unnormalized since the ansatz wave
function ψθ (σ ) = 〈σ |ψθ〉 is in general unnormalized (as it is
usually challenging to normalize the ansatz wave function due
to complicated wave function structure). Since Eθ depends on
variational parameters θ, one thus can in principle optimize Eθ

obtained by Eq. (5) against θ, giving rise to the optimal ground
state energy and wave function within the ansatz.

Stochastic gradient descent (SGD) is de facto for optimiza-
tions in machine learning [37–39] and can also be employed
in computational physics such as optimization in VMC [40].
There are various generalizations beyond vanilla SGD op-
timizers that consider momentum and adaptive behaviors,
among which Adam [41] is one common optimizer in training
neural networks. Natural gradient descent, a concept emerged
from information geometry, is one of the optimization tech-
niques where the local curvature in distribution space defined
by neural networks has been considered [42–45]. Efficient ap-
proximations on natural gradients have also been investigated
such as FANG [46] and K-FAC [47–51]. For optimization
problem such as VMC, gradient descent and natural gradi-
ent descent methods can be applied where various machine
learning techniques can be utilized to boost VMC. Natural
gradient optimization is exactly equivalent to the stochastic
reconfiguration (SR) method [52,53] in VMC [54–57].

Recently, there were various studies focusing on using
RBM or related neural networks as the ansatz wave function
for quantum systems composed of spins [55,58–69], bosons
[54,70,71], and fermions [56,72]. In previous studies, to in-
corporate such a wave function ansatz into the framework of
VMC, one either computes all derivatives ∇θψθ (σ ) analyti-
cally when the neural network ansatz is simple enough [58] or
applies AD on the wave function to compute ∇θψθ (σ ) [68,73],
and then estimates the gradient ∇θEθ by MC sampling given
by

∇θEθ = 2Re

[〈∇ψσ
∗

ψ∗
σ

Eloc

〉
− 〈Eloc〉

〈∇ψσ
∗

ψ∗
σ

〉]
, (6)

where 〈·〉 denotes MC sampling of configurations σ from
probability distribution |ψ (σ )|2. However, applying AD di-
rectly in the energy expectation Eθ = 〈ψθ|H |ψθ〉 to obtain the
gradient ∇θEθ , the most intuitive way to optimize the ground
state, is still lacking partly due to the lack of AD technique
for MC expectations sampled from unnormalized probability
distributions. With the introduction of ADMC in this work,
we can implement AD-aware VMC, which is much more
straightforward and easy to implement by directly optimizing
the energy expectation without any analytical derivation on
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derivatives for MC expectations or wave functions, which we
call “end-to-end” ADVMC.

III. THEORY

In this section, we present the general theory of the ADMC
which enables infinite-order automatic differentiation on MC
expectations with unnormalized probability distributions. We
show the detailed derivations on the general theory.

A. Detach function

We first introduce detach function ⊥(x) which features
⊥(x) = x and d⊥(x)

dx = 0. Here we list some basic formulas in
terms of detach functions utilized later: f (⊥(x)) = ⊥( f (x)),
⊥(⊥(x)) = ⊥(x), ⊥(x + y) = ⊥(x) + ⊥(y), and ⊥(xy) =
⊥(x)⊥(y). The detach function can be easily implemented
and simulated in modern machine learning frameworks (it
corresponds to stop_gradient in TENSORFLOW [74] and
detach in PYTORCH [75]). We call this function primitive as
the detach function in this work. This weird-looking function
has a natural explanation in the context of machine learning,
especially in terms of computational graphs. Such an operator
corresponds to nodes in the graph which only pass forward
values while stopping the backpropagation of gradients.

By utilizing the detach function, we can construct functions
whose derivatives of each order are not related. For example,
the function O(x) = x − ⊥(x) equals zero irrespective of x
although its first-order derivative is 1. Using the language of
the detach function, the meanings of “function” and “equal”
can be enlarged.

Theorem 1 For any “weird” function, whose value and
every order of derivatives are defined separately, it can always
be expressed by “normal” functions with detach function ⊥.

Proof. For a function F (x) for which each order of deriva-
tives is defined as F (n)(x) = hn(x), the construction with ⊥
is

F (x) =
∞∑

n=0

1

n!
hn(⊥(x))(x − ⊥(x))n. (7)

When translated into TENSORFLOW language, Theorem 1
states that every function defined with tf.custom_gradient
can be instead defined with tf.stop_gradient.

Corollary 1. For a function with multiple variate input
F (x1, . . . , xm) whose derivatives F (n1,....nm ) are defined sep-
arately, irrelevant to the original function, it can always be
expressed by “normal” functions together with single variate
detach function ⊥.

The corollary above is obvious by considering similar Tay-
lor expansion construction as in Eq. (7).

The introduction of imaginary number i enlarges the mean-
ing of the equal sign by twice the equivalence relation: x =
y ⇔ Re(x) = Re(y) and Im(x) = Im(y). Similarly, with the
introduction of the detach function, the equal signs are en-
larged as infinite independent equivalence relations: f (x) =
g(x) ⇔ ⊥( f (n)(x)) = ⊥(g(n)(x)) (n = 0, 1, 2, . . .). The con-
ventional “equal” is reexpressed as one relation (n = 0) of the
above series: ⊥( f (x)) = ⊥(g(x)).

B. ADMC

We are ready to construct a general theory for MC expecta-
tion which can render AD to correctly obtain its directives at
all orders (including the zero-order derivative, the expectation
itself). We employ the extended score function method to en-
able AD on MC expectations for any complicated distribution,
both normalized and unnormalized. Theorem 2 below is the
central theoretical result of the present paper.

Theorem 2. The following MC estimator of 〈O(x, θ)〉p,

〈O(x, θ)〉p =
〈 p
⊥(p) O(x, θ)

〉
⊥(p)〈 p

⊥(p)

〉
⊥(p)

, (8)

is automatic differentiable to all orders and works for both
normalized and unnormalized probability distribution p =
p(x, θ).

To prove Theorem 2, we first introduce the following
lemma.

Lemma 1. For both normalized and unnormalized probabil-
ity distribution p = p(x, θ),∑

x∈S(p)

p

⊥(p)
.= Z

⊥(Z )
. (9)

Here Z is the shortcut for partition function Zθ =∑
x∈all p(x, θ) with x ∈ all representing the summation over

all configurations x.
∑

x∈S(p) denotes the average obtained
through MC sampling according to the probability distribution
p. Note that, for brevity, we omit the 1

Ns
factor before the

MC sum
∑

x∈S(p) in Eq. (9) and hereafter; the sum should be

understood as the average 1
Ns

∑
x∈S(p), where Ns is the number

of sample configurations. In Eq. (9) and hereafter, “
.=” means

that it is the same as the equal sign since MC estimation can
be made exact in the limit of large Ns. The equal sign also
makes sense in any order derivatives. Therefore, to prove the
lemma we just need to demonstrate the following formula:

⊥
⎛
⎝ ∑

x∈S(p)

∇ (n)
θ

p

⊥(p)

⎞
⎠ .= ⊥

(
∇ (n)

θ

Z

⊥(Z )

)
, (10)

where ∇ (n)
θ

is a shortcut for ∇ (n1,...,nm )
θ1,...,θm

, n j = 0, 1, 2, . . ..
For n = 0, the equation is simply true since both sides give

1. For arbitrary n, it is straightforward to show that

⊥
⎛
⎝ ∑

x∈S(p)

⊥(∇ (n) p)

⊥(p)

⎞
⎠ .=

∑
x∈all

⊥(p)

⊥(Z )

⊥∇ (n) p

⊥(p)

= ⊥∇ (n) ∑
x∈all p

⊥Z

= ⊥(∇ (n)Z )

⊥(Z )
, (11)

which finishes the proof of the lemma.
The proof of the lemma above can be significantly simpli-

fied. With the enlarged meaning of the equal sign, each order
of derivatives is automatically equal as long as expressions
with the detach function are accordingly considered. In other
words, to prove that some relation holds true for any or-
der derivatives ⊥( f (n)(x)) = ⊥(g(n)(x)) (n = 0, 1, 2, . . .), we
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only need to prove that f (x) = g(x) is true. This simplification
is the power of the detach function. The proof of the lemma
can be simplified as

∑
x∈S(p)

p

⊥(p)
.=

∑
x∈all

⊥(p)

⊥(Z )

p

⊥(p)
=

∑
x∈all p

⊥(Z )
= Z

⊥(Z )
. (12)

Note that the simplification from the involved proof in
Eqs. (10) and (11) to the neat one in Eq. (12) reflects the
brevity and power of the detach function and its algebra.

Now we are ready to prove Theorem 2. Note that, in the
average 〈·〉⊥(p), the probability distribution ⊥(p) is the back-
ground and is not involved in derivatives. Based on the spirit
of detach function algebra, it is enough to show

∑
x∈S(p)

p

⊥(p)
O

/ ∑
x∈S(p)

p

⊥(p)
.=

∑
x∈all

p
O

Z
, (13)

where O is the shortcut for O(x, θ). By utilizing the lemma in
Eq. (9) and observing the fact that Zθ is independent of x, it is
straightforward to prove Eq. (13) as follows:

∑
x∈S(p)

p

⊥(p)
O

/ ∑
x∈S(p)

p

⊥(p)
.=

∑
x∈all

⊥(p)

⊥(Z )

pO

⊥(p)

/(
Z

⊥(Z )

)

=
∑
x∈all

p
O

Z
, (14)

where the first
.= comes from Eq. (9) and the properties of the

detach function. Here we emphasize that both the equal signs,
.= and =, have enlarged meanings that expressions of both

sides are equal to arbitrary order derivatives. Thus we get

⊥
(

∇ (n)
θ

〈 p
⊥(p) O

〉
⊥(p)〈 p

⊥(p)

〉
⊥(p)

)
.= ⊥

(
∇ (n)

θ

∑
x∈all

p
O

Z

)
, (15)

where n = 0, 1, 2, . . .. This finishes the proof of Theorem 2,
which is the central result of the present paper. We believe
Theorem 2 can provide endless opportunities to build applica-
tions combining AD infrastructure with MC algorithms.

We emphasize that Theorem 2 is general and applies for
both normalized and unnormalized probability distribution p.
For the case of normalized distribution

∑
x∈all p = 1, we ob-

tain
∑

x∈S(p)
p

⊥(p)
.= ∑

x∈all ⊥(p) p
⊥(p) = ∑

x∈all p = 1. Then,
Eq. (8) in Theorem 2 can be simplified to 〈O〉p = 〈 p

⊥(p) O〉⊥(p),
which is the MC estimator applicable only for the case of
normalized probability distribution. For nearly all interesting
applications with an unnormalized probability distribution p,
Theorem 2 is the correct one to use, as we demonstrate in the
applications below.

It is worth providing a heuristic explanation for Theorem 2.
Through discretizing the parameters θ in numerical differenti-
ations, a rigorous MC gradient can be obtained in the limit of
zero discretizing intervals. Specifically, to get gradients at θ0,
one can directly compute MC expectations of O by sampling
separately from p(θ) and from p(θ0), with θ very close to
θ0. However, it is highly inefficient to sample separately from
p(θ) and p(θ0) distributions. As θ is close to θ0 (in the limit
θ → θ0), one can actually reuse the samples from p(θ0) to

evaluate the expectation at θ:

〈O(x, θ)〉p(θ)

=
∑
x∈all

p(θ)O(x, θ)

/ ∑
x∈all

p(θ)

=
∑
x∈all

p(x, θ0)
p(x, θ)

p(x, θ0)
O(x, θ)

/ ∑
x∈all

p(x, θ0)
p(x, θ)

p(x, θ0)

=
〈

p(x, θ)

p(x, θ0)
O(x, θ)

〉
p(θ0 )

/〈
p(x, θ)

p(x, θ0)

〉
p(θ0 )

. (16)

By comparing Eq. (16) with Eq. (8), one can observe the
parallel relations between them and understand the physical
rationale behind detach functions: when evaluating derivatives
only θ changes while θ0 remains fixed; all terms related to θ0

are wrapped with the detach function ⊥ in the exact form of
Eq. (8) in Theorem 2.

Finally, we make a note on implementation. For numerical
stability, ln p instead of p is in general referenced and the AD
version of the MC estimator for generic probability distribu-
tion p is then given by

〈O〉p = 〈exp(ln p − ⊥(ln p))O〉⊥p

〈exp(ln p − ⊥(ln p))〉⊥p
. (17)

From the computational graph implementation perspective,
p is never explicitly calculated since the numerical value of
exp(ln p − ⊥(ln p)) is exactly 1. Therefore, the ADMC ap-
proach using ln p is automatically free from the numerical
instability encountered in approaches directly using p.

C. Fisher information matrix and Kullback-Leibler
divergence in ADMC

For the optimization method of natural gradient descent,
the parameters θ are updated in the following way: �θ =
−λF−1∇θOθ , where F is the Fisher information matrix, λ is
the learning rate, and Oθ = 〈O(x, θ)〉p. The FIM is of great
importance in numerical optimization and is defined as

Fi j =
〈
∇i ln

p

Z
∇ j ln

p

Z

〉
p
, (18)

where i, j represent θi, θ j . The FIM is also the Hessian (with
respect to θ′) of Kullback-Leibler (KL) divergence between
p(x, θ) and p(x, θ′) with θ′ approaching θ. Hence, it defines
the local curvature in distribution space.

In the following, we derive useful formulas related to FIM
with unnormalized probability distribution p in the context
of ADMC. For unnormalized p, the expectation of the score
function is not zero and it is given by

〈∇θ ln p〉p = 1

Z

∑
x∈all

p
∇θ p

p
= ∇θZ

Z
= ∇θ ln Z. (19)

Then, the FIM for unnormalized p can be defined as

Fi j = 〈∇i ln p∇ j ln p〉p − 〈∇i ln p〉p〈∇ j ln p〉p. (20)

To apply the AD approach, we can obtain the FIM through
the KL divergence whose Hessian is the FIM. The AD-aware
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KL divergence is given by

KL
(
⊥

( p

Z

)
| p

Z

)
= ln

Z

⊥(Z )
−

〈
ln

p

⊥(p)

〉
⊥(p)

= ln

〈
p

⊥(p)

〉
⊥(p)

−
〈
ln

p

⊥(p)

〉
⊥(p)

, (21)

where the second equation is due to Eq. (9) in Lemma 1.
Therefore, for any unnormalized p, we can construct an ob-
ject function as Eq. (21) and compute the Hessian of it by
ADMC. This approach is preferable to direct estimation from
Eq. (20) in some scenarios. A further discussion is given in
Appendix A.

Following the path of Eq. (21), we could further derive the
AD-aware formula for general KL divergence with unnormal-
ized probability p, q parametrized by θ as

KL(pθ|qθ ) = ln

〈 p
⊥p

q
p

〉
⊥p〈 p

⊥p

〉
⊥p

−
〈 p
⊥p ln q

p

〉
⊥p〈 p

⊥p

〉
⊥p

. (22)

D. End-to-end ADVMC

As discussed in Sec. II, VMC is an important approach
attempting to find the ground state wave function of a Hamil-
tonian by optimizing parametrized wave functions. Here we
describe how to implement end-to-end VMC with ADMC,
which we call ADVMC. We focus on the case where ansatz
wave functions are positively valued. For the general case of
complex-valued ansatz wave functions, ADVMC can also be
implemented (see Appendix B for details).

As in Eq. (5), the energy expectation value Eθ =
〈ψθ|H |ψθ〉 of Hamiltonian H associated with the wave func-
tion ψθ (σ ) = 〈σ |ψθ〉 can be evaluated through Monte Carlo
sampling:

Eθ = 〈Eloc(σ, θ)〉p(σ,θ), (23)

where p(σ, θ) = |ψθ (σ )|2 is usually an unnormalized prob-
ability distribution. To optimize (minimize) Eθ using a
gradient-based approach, we need to evaluate the gradients
with respect to variational parameters θ:

∇θ〈Eloc(σ, θ)〉p(σ,θ). (24)

It is clear that Eloc(σ, θ) in VMC plays a similar role as O(x, θ)
in MC discussed earlier. It is natural to integrate AD into
VMC so that an end-to-end ADVMC can be constructed. The
ADVMC version of the energy estimator can be constructed
as follows:

〈Eloc(σ, θ)〉p = Re

〈 p
⊥pEloc(σ, θ)

〉
⊥p〈 p

⊥p

〉
⊥p

, (25)

where Re guarantees that the energy estimator is real.
Taking account of the variance reduction trick, the AD-

VMC energy estimator for the real wave function can also be
constructed as [76]

〈Eloc(σ, θ)〉p = Re

〈
ψ2

⊥(ψ2 )⊥(Eloc(σ, θ))
〉
⊥(p)〈

ψ2

⊥(ψ2 )

〉
⊥(p)

. (26)

Actually, the objective in Eq. (26) has better performance
compared with the original estimator in Eq. (25) since E (σ, θ)
is detached in Eq. (26) and no further backpropagations be-
hind this node are needed. Note that Eq. (26) as the estimator
of Eθ can only reproduce a first-order derivative in the frame-
work of AD, while the original estimator in Eq. (25) is correct
for all-order derivatives (see Appendix B 3 for details).

The end-to-end ADVMC framework is universal and easy
to implement. Instead of computing derivatives of wave func-
tions and plugging the results into the formula of energy
gradients by hand as conventional VMC approaches do in
Eq. (6), the end-to-end ADVMC optimizes the energy expec-
tation directly and leaves all remaining work to the machine
learning (ML) infrastructure. Analytic and implementation
works can be done automatically with AD infrastructure, the
vectorization or broadcast mechanism, built-in optimizers,
and GPU acceleration provided by the standard ML frame-
work. For different quantum models, the only difference is
different Eloc(σ, θ). After implementing Eloc, we can bring it
into Eq. (26) as an AD-aware energy estimator. Then, we can
use AD to compute the gradients and gradient-based optimizer
to optimize the energy.

Besides SGD-based optimizers, natural gradient optimiz-
ers (SR methods) can also be incorporated into the AD
framework. In the context of VMC, the optimization method
of natural gradient descent updates the variational parameters
as follows: �θ = −λF−1∇θEθ , where F can be obtained by
Monte Carlo,

Fi j = Re

[〈
∂iψ

∗

ψ∗
∂ jψ

ψ

〉
p

−
〈
∂iψ

∗

ψ∗

〉
p

〈
∂ jψ

ψ

〉
p

]
, (27)

where ψ is a shortcut for ψθ (σ ) and dependence on parame-
ters θ is implicit. Note that Eq. (27) is connected to Eq. (20)
when the distribution p = |ψ |2 and ψ is real. The relation be-
tween the FIM and SR method with complex wave functions
can also be analyzed by generalizing KL divergence in the
complex distribution case (see Appendix B 4 for details).

IV. APPLICATIONS

The general theory of ADMC we presented above has
broad applications, including achieving high accuracy and ef-
ficiency in studying interesting many-body interacting models
in physics. As we mentioned earlier, by introducing ADMC,
we can leverage not only AD but also other powerful features
of machine learning frameworks in traditional Monte Carlo.
AD together with vectorization, GPU acceleration, and state-
of-the-art optimizers can build faster and more capable Monte
Carlo applications to study challenging issues in statistics and
physics. Here we present two explicit ADMC applications
in studying interacting many-body systems [76] where com-
parable or higher accuracy can be achieved comparing with
previous studies using RBM-based VMC, and tensor network
methods.

A. Fast search of phase transitions by ADMC

For many-body systems in physics, it is of central interest
to find distinct phases and phase transitions between them.
We show that ADMC can provide a general and efficient way
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to find phase transitions in many-body interacting models. At
a given phase transition, certain quantities such as specific
heat and ordering susceptibility reach a maximal value. This
naturally enables ADMC to locate the phase transition in
a fast and efficient way by searching for the maximum. A
phase transition can occur when certain parameters such as
temperature, pressure, and magnetic field are tuned across a
critical value. ADMC can efficiently find the critical value of
tuning parameter, such as the transition temperature.

For concreteness, we use ADMC to find the transition
temperature of the 2D Ising model on a square lattice as an
example, although the approach we present is general and can
be applied to both classical and quantum models. For quantum
models, we call the corresponding AD approach AD quantum
Monte Carlo (ADQMC). The 2D Ising model is given by
H = −∑

〈i j〉 Jσiσ j , where σi = ±1 is the Ising spin on site
i of the square lattice and we take J = 1 as the energy unit.
It is well known that there is a phase transition at critical
temperature Tc below which the system orders spontaneously
[77]. The Ising model can be MC sampled with unnormal-
ized probability distribution p(σ, T ) = exp(−H (σ )/T ). As
specific heat reaches a maximal value at the phase transition,
conventional MC methods usually compute specific heat for
many temperature points and then locate the peak of the spe-
cific heat curve as the phase transition. In these conventional
approaches, it requires analytical derivation of the formula
for specific heat since MC sampling usually cannot compute
the specific heat directly. It is relatively simple for specific
heat due to the fluctuation-dissipation theorem, i.e., Cv (T ) =
(〈H2〉p − 〈H〉2

p)/T . However, it is generally challenging to
analytically derive quantities such as gradient or higher-order
derivatives of physical quantities.

ADMC provides a general way to search for phase transi-
tion by directly using the specific heat Cv (T ) or other physical
quantities as the objective function, which avoids the draw-
back of the conventional MC approaches mentioned above.
With the help of ADMC, we can find the peak of the spe-
cific heat curve much faster and more efficiently. Without the
knowledge of the fluctuation-dissipation theorem, we can find
the location of the peak very accurately with the total com-
putation time which is orders of magnitude faster. In ADMC,
we first directly compute energy using the AD-aware version
of the MC energy estimator as Eq. (8) and then, following the
spirit of SGD, we update the temperature (starting from any
T0) based on the second-order derivative of MC expectation
energy in every few MC updates:

�T ∝ ∂Cv

∂T
=

∂2
〈 p
⊥(p) H

〉/〈 p
⊥p

〉
∂T 2

. (28)

Although the number of MC updates in each round of
temperature update is small, rendering noisy estimation of
specific heat, such a noisy gradient estimator can still con-
verge to Tc very quickly. This is the essence of SGD: noisy
gradient estimation might lead to better and faster conver-
gence to the minimum or maximum. This is also why a
mini-batch gradient estimate is used in general neural net-
work training; for instance, one MC sample for each pass
in the training of a variational autoencoder [32] and CD-1
algorithm in RBM training [78] work quite well. Follow-

FIG. 2. Fast search for critical temperature Tc by the ADMC
approach for the Ising model of lattice size 50 × 50. The obtained
expectation value of Tc from training is 2.279, about 0.4% off from
the exact value 2.269 [77]. Considering the short training time and
finite size effect, this is a very good estimation of Tc and more
accurate results can be obtained by larger system size and smaller
learning rate.

ing the same philosophy, we can combine SGD into the
ADMC framework applied here. Specifically, to maximize
some MC expectation values against variational parameters
θ = argmaxθ〈O(x, θ)〉p(x,θ), we may obtain noisy estimation
of the gradients by doing few MC update steps. Such noisy
estimation of the gradients can render stable and faster opti-
mizations if the learning rate is small enough.

Moreover, one can also utilize the third-order derivative of
expectation energy and apply the Newton method to update
the temperature, which convincingly shows the value of in-
finitely automatic differentiable MC estimators.

In terms of implementation, we also combine vectorization
into the ADMC workflow above, which takes the Markov
chain as one of the extra dimensions for spin configuration
tensors, enabling MC simulation on tens of thousands of
Markov chains simultaneously. Such a vectorization scheme
is highly efficient compared to conventional parallel schemes,
such as one Markov chain per CPU core. Besides, GPU sup-
ports such vectorization very well, providing further speed-up.
The combination of SGD and vectorized Wolff algorithm
leads to relatively accurate estimation of Tc in just a few
seconds. The result is summarized in Fig. 2.

We emphasize that the approach we present here is general
and can be straightforwardly generalized to other classical or
quantum models, where fast estimation on critical values is
desired. The knowledge of critical values is helpful to reduce
unnecessary calculations on data points deeply in phases and
renders a fast search of phase transitions in interacting many-
body systems.

B. Accurate search of ground states by ADVMC

The integration of AD with VMC provides a powerful
tool to accurately study ground states of many-body quantum
models in one and higher dimensions. In particular, ADVMC
can be used to study generic quantum models (including those
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FIG. 3. Schematic illustration of the end-to-end ADVMC. Con-
figurations (spins) are vectorized in an extra dimension as different
Markov chains. A computational graph is constructed to give the
logarithm of wave function ln ψθ which is also vectorized. Loop 1
is the conventional MCMC approach for updating the configurations
according to the Metropolis-Hasting algorithm. Loop 2 is the ADMC
approach to evaluate the AD-aware energy estimator and update the
parameters θ by optimizers. One iteration of our algorithm includes
many (often the size of the system) configuration updates (loop 1)
to decrease the autocorrelation and one step of parameter update
(loop 2).

models with frustration) in two and higher dimensions using
general neural-network states as ansatz wave functions.

The workflow of the end-to-end ADVMC is sketched in
Fig. 3. In the ADVMC algorithm, we can take advantage of
the vectorization technique to watch and update thousands of
independent Markov chains in a parallel fashion. As shown
in Fig. 3, the (spin) configurations of different Markov chains
are vectorized in a new dimension of size nmc (the number
of Markov chains). The configurations are sent to an arbi-
trary computational graph with variational parameters θ where
the logarithm of wave function ln ψθ (σ ) is evaluated as the
output. The computational graph can be constructed by mean-
field wave functions with Jastrow factors, matrix product state
[79,80], deep neural networks, or any other programs with
variational parameters and one scalar output. ln ψθ also has
an extra dimension with the same size as nmc. In evaluating
the computational graph, the extra dimension behaves as the
batch dimension in ML language which can be easily taken
care of using the broadcast technique supported by ML. With
the knowledge of wave function amplitudes, we can update
the configurations using the MCMC method to make them
satisfy the distribution given by the computational graph wave
function ansatz.

Here we demonstrate this new paradigm of VMC by AD-
VMC study of the spin-1/2 quantum Heisenberg model on
the square lattice. The model is given by H = ∑

〈i j〉 J Si · S j ,

where S j is a spin-1/2 operator on site j. Because of the
Marshal-sign rule the ground state wave function amplitudes
of the Heisenberg model can be rendered positive definite.
Consequently, for simplicity we use positive ansatz wave
functions in our ADVMC simulations. The computational

FIG. 4. Numerical results of end-to-end ADVMC approach for
the spin-1/2 quantum Heisenberg model on the square lattice with
system size 8 × 8 and periodic boundary condition. The varia-
tional wave function was chosen to be a fully connected neural
network with seven layers. The number of nodes on each layer is
(16l2, 8l2, 4l2, 8l2, 4l2, l2, 1), with l = 8. The activations were set to
be RELU for all these layers except the last one. The Adam optimizer
was used to update the parameters. The dashed line is the benchmark
ground state energy given by the stochastic series expansion method.
The inset shows the convergence of energy near the exact value. The
ADVMC result is energetically competitive with results obtained
by various state-of-the-art methods including entangled plaquette
statets, projected entangled pair states, and RBM-based VMC.

graph we utilize in this problem is a fully connected neu-
ral network with seven layers and with rectified linear unit
(RELU) activations [81]. The numbers of nodes on these lay-
ers are 16l2, 8l2, 4l2, 8l2, 4l2, l2, 1, where l2 = 64 is the size
of the system. Such neural network design is general without
considering any symmetry and geometric information. In total
there are more than one million variational parameters and
the number of Markov chains is 5000 in our ADVMC simula-
tions. With such a large number of independent Markov chains
and variational parameters, the ADVMC implementation is
still very efficient on a GPU in terms of time due to the highly
parallelized structure of our algorithm.

The approximation ground state energy optimized by
Adam converges to −0.6733 (in the unit of J) per site aver-
aged by the last 5000 energy data points, as shown in Fig. 4.
This result has 3 × 10−4 relative error compared with the
benchmark ground state energy obtained by SSE [82]. It is
also energetically competitive with results obtained by various
state-of-the-art methods including EPS [83], PEPS [84,85],
and RBM-based VMC [58]. This convincingly demonstrates
that end-to-end ADVMC can enable us to reach state-of-the-
art numerical results with very moderate effort for quantum
models.

V. DISCUSSIONS AND CONCLUSIONS

One central issue in Monte Carlo simulations of interacting
many-body quantum models is the notorious sign problem.
Although it is shown to be NP-hard to solve the sign problem
generically [86], it is still possible to ease [87–89] or solve
[16] the sign problem of a given specific quantum model in
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QMC simulations by certain basis transformations. We pro-
pose to employ ADMC as a general way to find the optimal
basis which can ease or solve the notorious sign problem in
QMC simulations of interesting quantum models. One ap-
propriate objective in ADMC would be the expectation value
of the sign, which depends on the parameters characterizing
the basis choice. ADMC can help to find an optimal basis
in which the sign problem is alleviated. From the ADMC-
optimized basis with eased sign problem, one may simulate
strongly correlated models with lower temperature and larger
system size than QMC with usual basis. In fact, we have
successfully applied this idea in mitigating the sign problem
in determinant QMC [90].

ADMC proposed in the present paper is based on score
function estimators. For the specific models we have studied,
the present ADMC obtains accurate results without suffering
any high variance in MC estimations. It is possible to further
improve ADMC by reducing variance in MC estimations of
expectations. In other words, it would be desired to find base-
lines or general control variables that could systematically
reduce the variance of MC estimations. It is one of the future
routes to improve ADMC by introducing baselines suitable for
any order derivatives as in the case of normalized probability
distribution [91].

In conclusion, we have presented the general theory and
framework of ADMC. We also showed how Monte Carlo
expectations, KL divergence, and objectives from various
settings can be expressed in an infinitely AD fashion. We
further applied the ADMC approach to various Monte Carlo
applications including classical Monte Carlo and end-to-end
VMC. We believe that the ADMC approach can inspire more
accurate and efficient Monte Carlo designs with machine
learning toolboxes in the future. At the intersection of dif-
ferentiable programming and probabilistic programming, the
ADMC framework provides a promising route to advancing
Monte Carlo applications in the fields of statistics, machine
learning, and physics.
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APPENDIX A: AUTOMATIC DIFFERENTIATION
APPROACH FOR FISHER INFORMATION MATRIX

In this part, we further discuss the implementation details
and advantages of AD approach toward FIM.

The test case for algorithm implementations of the FIM
we utilized involves simple distributions such as multivari-
ate Gaussian distribution N (μ|σ ), in which μ, σ depend on
variational parameters θ. For the simplest case, σ is constant
and μ(θ) is determined by parameters θ. We can obtain an

analytical expression for the FIM in this case:

Fi j = ∂μT

∂θi
σ−1 ∂μ

∂θ j
. (A1)

f we further assume σ = I and μi = μ(θi ) is in the same
function form, we can further simplify the FIM analytically
as

F = (∂μ)2I. (A2)

In our code example, we test with a three-dimensional Gaus-
sian distribution and μ(θ ) = (θ + 1)2 where θ = 0. The
expected FIM should be 4 I3×3 in this case. Such test cases can
also be used for testing the implementation of unnormalized
probability cases if the normalization factor of the Gaussian
distribution is deliberately dropped out.
The first advantage for the FIM with AD approach is that zero
elements might be kept without MC fluctuations or error bars.
Taking the test case above for an example, all off-diagonal
elements of the FIM should be zero analytically. If one utilized
the conventional way of computing the FIM by MC averaging
first-order derivatives of ln p, the resulting off-diagonal ele-
ments are not zero due to the error bar introduced by MC.
However, with advanced graph optimization and smart com-
piler infrastructure provided by TENSORFLOW, unnecessary
computations can be identified and removed from the runtime
graph. With such a state-of-the-art executing engine of the
computational graph, the off-diagonal terms can be pinned at
zero with the AD approach. This is because the zero nature
of these terms has already been identified at graph building
time by TENSORFLOW engines. That is to say, the numerical
result can even reach theoretical precision with the help of
AD. It is worth noting that such gain is not guaranteed since
the TENSORFLOW engine can fail to recognize complicated
series of unnecessary operations. For example, AD with un-
normalized probability objectives gives nonzero off-diagonal
elements in the FIM using the same Gaussian distribution
test case.
The second advantage of the AD approach is the bet-
ter compatibility with the vectorization scheme. Suppose
we vectorize Markov chains as the batch dimension as
the case in our implementation of example applications. The
conventional way to evaluate the FIM involves terms like∑

x∼p ∂i ln p(x) ∂ j ln p(x) where x are different configurations
living on the extra vectorization dimension in our setup. It
would be hard to evaluate such terms by treating the batch
dimension as a whole where x are different for different
chains. This restriction is mainly brought by the modern AD
infrastructure of ML libraries in which derivatives for multiple
outputs can only be obtained one by one and no tensorized
fashion of AD is implemented. Instead, the KL divergence
objective only concerns terms like

∑
x∼p

p
⊥p which is very

easy to parallelize by a simple reduce mean. The computation
time of the conventional approach scales with the number of
Markov chains or configuration samples, N , which is typically
thousands to millions, while the computation time of the AD
approach scales with the parameter number (one has to apply
AD on each derivative to get the Hessian in ML libraries)
which could be way less than the configuration numbers
vectorized in the batch dimension. And our numerical experi-
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ments indeed show that the AD approach is clearly faster than
the conventional approach either in graph building time or in
graph executing time.

APPENDIX B: END-TO-END ADVMC SETUP
FOR GENERAL COMPLEX WAVE FUNCTIONS

1. Computational graph setup for general wave function

If the ground state wave function is not always real posi-
tive, the general form can be expressed as ψσ = erσ eiθσ , where
r characterizes the real norm part ln |ψ | and θ characterizes
the complex angle for the wave function. Therefore, we need
two separate computational graphs for computing r and θ , and
train them together towards minimal energy. We discuss about
the most reliable form of AD-aware energy estimators and the
assistant estimator for natural gradients in the following.

2. Infinite-order AD estimator for VMC

The reason why VMC works is due to the following fact:
the quantum expectation energy can be approximated by clas-
sical Monte Carlo–averaged Eloc:

〈H〉 =
∑

σσ ′ ψ∗
σ Hσσ ′ψσ ′∑

σ ψ∗
σψσ

=
∑

σσ ′ ψ∗
σ ψσ (Hσσ ′ψσ ′/ψσ )∑

σ ψ∗
σψσ

=
∑

σ ψ∗
σψσ

∑
σ ′ (Hσσ ′ψσ ′/ψσ )∑

σ ψ∗
σψσ

=
∑

σ ψ∗
σψσ Eloc(σ )∑
σ ψ∗

σψσ

= Re

∑
σ ψ∗

σψσ Eloc(σ )∑
σ ψ∗

σψσ

=
∑

σ ψ∗
σψσ ReEloc(σ )∑

σ ψ∗
σψσ

, (B1)

where Eloc(σ ) = ∑
σ ′ (Hσσ ′ψσ ′/ψσ ), and the summation over

σ ′ can be done efficiently because Hσσ ′ is a sparse matrix
for the general local Hamiltonian. If we treat ψ∗

σψσ as the
classical probability p(σ ), then we have

〈H〉 =
∑

σ

p(σ )(ReEloc(σ ))/
∑

σ

p(σ ) = 〈ReEloc(σ )〉σ∼p(σ ),

(B2)
which indicates 〈H〉 is just the expected value of ReEloc(σ )
when σ is sampled from an unnormalized distribution p(σ ).
For this problem, our ADMC approach gives an accurate
infinite-order AD-aware estimator of it:

Es〈H〉 =
∑

σ∈S(p)
ψ∗

σ ψσ

⊥(ψ∗
σ ψσ ) ReEloc(σ )∑

σ∈S(p)
ψ∗

σ ψσ

⊥(ψ∗
σ ψσ )

. (B3)

Here
∑

σ∈S(p) means doing summation on the set of config-
urations σ sampled from distribution p = ψ∗

σψσ using the
MCMC method. This estimator is correct for arbitrary-order
derivatives no matter whether the wave function ansatz is real
or not. Nevertheless, we can design more efficient estimators
in the VMC context with lower variance and better optimiza-
tion results as we will show below.

3. First-order efficient AD estimator for VMC

In most of the cases, the knowledge about the gradients
(first-order derivatives) of 〈H〉 is enough, while our estimator
in Eq. (B3) is correct for any order of derivatives. There is
the possibility that we can further increase our precision if we
focus on the first-order derivative.

By analytically deriving the gradients of 〈H〉 from a quan-
tum expectation perspective, we have

∇〈H〉 = ∇
∑

σσ ′ ψ∗
σ Hσσ ′ψσ ′∑

σ ψ∗
σψσ

=
∑

σσ ′ (∇ψ∗
σ )Hσσ ′ψσ ′ + ψ∗

σ Hσσ ′ (∇ψσ ′ )∑
σ ψ∗

σψσ

−
∑

σσ ′ ψ∗
σ Hσσ ′ψσ ′∑

σ ψ∗
σψσ

∇ ∑
σ ψ∗

σψσ∑
σ ψ∗

σψσ

Hσσ ′=H∗
σ ′σ⇒

∑
σ (ψ∗

σψσ )
(∇ψ∗

σ

ψ∗
σ

Eloc(σ ) + ∇ψσ

ψσ
E∗

loc(σ )
)

∑
σ ψ∗

σψσ

−
∑

σσ ′ ψ∗
σ Hσσ ′ψσ ′∑

σ ψ∗
σ ψσ

∑
σ (ψ∗

σψσ )
(∇ψ∗

σ

ψ∗
σ

+ ∇ψσ

ψσ

)
∑

σ ψ∗
σψσ

= 2Re

⎛
⎝∑

σ ψ∗
σψσ

∇ψ∗
σ

ψ∗
σ

Eloc(σ )∑
σ ψ∗

σψσ

−
∑

σ ψ∗
σψσ Eloc(σ )∑
σ ψ∗

σψσ

∑
σ ψ∗

σψσ
∇ψ∗

σ

ψ∗
σ∑

σ ψ∗
σ ψσ

⎞
⎠.

(B4)

Note all the terms are in the form of
∑

σ ψ∗
σ ψσ O(σ )∑

σ ψ∗
σ ψσ

, as this kind of term can be estimated by
∑

σ∈S(p) O(σ )/Nmc, where Nmc is the
number of Monte Carlo sampling. Thus we have

∇〈H〉 .= 2Re

⎛
⎝∑ ∇ψ∗

σ

ψ∗
σ

Eloc(σ )

Nmc
−

∑
Eloc(σ )

Nmc

∑ ∇ψ∗
σ

ψ∗
σ

Nmc

⎞
⎠. (B5)

From the MC expectation perspective, we calculate the gradients of the general estimator in Eq. (B3); the result is not the
same as Eq. (B5). The difference terms are

diff = 1

Nmc
Re

∑
σ∈S(p)

(∇ψ∗
σ

ψ∗
σ

Eloc − ∇ψσ

ψσ

Eloc − ∇Eloc

)

= 1

Nmc
Re

∑
σ∈S(p)

(
∇ψ∗

σ

ψ∗
σ

Eloc − ∇ψσ

ψσ

Eloc − ∇
∑
σ ′

Hσσ ′
ψσ ′

ψσ

)
= 1

Nmc
Re

∑
σ∈S(p)

(
∇ψ∗

σ

ψ∗
σ

Eloc −
∑
σ ′

Hσσ ′
∇ψσ ′

ψσ

)
. (B6)
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diff normally is not zero numerically, but it goes to zero when Nmc goes to infinity as it should be. This is because H is Hermitian:

1

Nmc
Re

∑
σ∈S(p)

∑
σ ′

Hσσ ′
∇ψσ ′

ψσ

Nmc→∞= Re
∑
σσ ′

ψ∗
σψσ Hσσ ′

∇ψσ ′

ψσ

/ ∑
σ

ψ∗
σψσ

= Re
∑
σσ ′

ψ∗
σ ′ψσ ′

∇ψσ ′

ψσ ′
Hσσ ′

ψ∗
σ

ψ∗
σ ′

/ ∑
σ ′

ψ∗
σ ′ψσ ′

Hσσ ′=H∗
σ ′σ= Re

∑
σ ′

ψ∗
σ ′ψσ ′

∇ψσ ′

ψσ ′

∑
σ

(
Hσ ′σ

ψσ

ψσ ′

)∗/ ∑
σ ′

ψ∗
σ ′ψσ ′

= Re
∑
σ ′

ψ∗
σ ′ψσ ′

∇ψσ ′

ψσ ′
E∗

loc(σ ′)
/ ∑

σ ′
ψ∗

σ ′ψσ ′ = 1

Nmc
Re

∑
σ∈S(p)

∇ψ∗
σ

ψ∗
σ

Eloc. (B7)

Thus we proved limNmc→∞ diff = 0. In other words, If we
directly use Eq. (B3) as the estimator, AD will give the gradi-
ents with another term whose expectation is theoretically zero.
Since this term is in general nonzero in MC calculations, it
adds more variance to the estimation of energy. We can safely
drop the diff term from the philosophy of the baseline method.
In other words, it would be better to find the estimator whose
first-order derivative is directly Eq. (B5) without the diff term.

Such an estimator is easy to construct:

Es1〈H〉 = 2Re

∑
σ∈S(p)

ψ∗
σ

⊥ψ∗
σ
⊥Eloc(σ )∑

σ∈S(p)
ψ∗

σ

⊥ψ∗
σ

. (B8)

We can prove it by directly calculating the gradient of this
estimator:

∇Es1〈H〉 = 2Re

∑
σ∈S(p)

∇ψ∗
σ

⊥ψ∗
σ
⊥Eloc(σ )

∑
σ∈S(p)

ψ∗
σ

⊥ψ∗
σ( ∑

σ∈S(p)
ψ∗

σ

⊥ψ∗
σ

)2

− 2Re

∑
σ∈S(p)

ψ∗
σ

⊥ψ∗
σ
⊥Eloc(σ )

∑
σ∈S(p)

∇ψ∗
σ

⊥ψ∗
σ(∑

σ∈S(p)
ψ∗

σ

⊥ψ∗
σ

)2 .

(B9)

In the sense of its numerical value

⊥∇Es1〈H〉 = ⊥2Re

∑
σ∈S(p)

∇ψ∗
σ

ψ∗
σ

Eloc(σ )

Nmc

−⊥2Re

∑
σ∈S(p) Eloc(σ )

Nmc

∑
σ∈S(p)

∇ψ∗
σ

ψ∗
σ

Nmc
,

(B10)

which is just the same as Eq. (B5). Thus the AD-aware
estimator in Eq. (B8) gives the right approximation of the gra-
dients of 〈H〉 with lower variance than the general estimator,
Eq. (B3). Though it is only valid for the first order derivatives.

If the wave function is real, Eq. (B8) reduce to

Es1r =
∑

σ∈S(p)
pσ

⊥pσ
Re⊥Eloc(σ )∑

σ∈S(p)
pσ

⊥pσ

. (B11)

One can again verify it by directly differentiating on
Eq. (B11). The only change in Eq. (B11) is detached Eloc com-
paring with the general estimator, Eq. (B3). The new estimator
also has better performance when running the computational
graph since Eloc is detached and no backward propagation
passes through it.

4. SR and natural gradients

The SR method (natural gradient descent) is reported to
give faster convergence on VMC. In this part, we explore
the relation between natural gradient descent and the SR
method in general settings where the wave function could be
complex.

For real wave function cases, KL divergence plays the
role of the distance of distribution space whose Hessian FIM
gives the same formalism as the SR method as we have
shown in the main text. In terms of complex cases, traditional
KL divergence defined with p = ψ∗ψ loses the information
of wave function’s phases. Thus we need a better distance
measure to describe the difference between different wave
functions.

The natural choice is the Fubini-Study distance defined in
the Hilbert space:

s(ψ, φ) = arccos

√
〈ψ |φ〉〈φ|ψ〉
〈ψ |ψ〉〈φ|φ〉 . (B12)

Infinitesimal distances are thus given by

ds2 = s(ψ,ψ + δψ )2 = 〈δψ |δψ〉
〈ψ |ψ〉 − 〈δψ |ψ〉

〈ψ |ψ〉
〈ψ |δψ〉
〈ψ |ψ〉

=
〈
δψσ

ψσ

δψ∗
σ

ψ∗
σ

〉
p

−
〈
δψσ

ψσ

〉
p

〈
δψ∗

σ

ψ∗
σ

〉
p

, (B13)

where δψ = ∂iψdθi and 〈O〉p =
∑

σ |ψσ |2O(σ )∑
σ |ψσ |2 .

Thus we have

ds2 =
∑
α,β

(〈
∂αψσ

ψσ

∂βψ∗
σ

ψ∗
σ

〉
p

−
〈
∂αψσ

ψσ

〉
p

〈
∂βψ∗

σ

ψ∗
σ

〉
p

)
dθαdθβ

=
∑
α,β

Re

(〈
∂αψσ

ψσ

∂βψ∗
σ

ψ∗
σ

〉
p

−
〈
∂αψσ

ψσ

〉
p

〈
∂βψ∗

σ

ψ∗
σ

〉
p

)
dθαdθβ

=
∑
α,β

Sαβdθαdθβ, (B14)

where

Sαβ = Re

(〈
∂αψσ

ψσ

∂βψ∗
σ

ψ∗
σ

〉
p

−
〈
∂αψσ

ψσ

〉
p

〈
∂βψ∗

σ

ψ∗
σ

〉
p

)
(B15)
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is identical to the quantum version of the Fisher information
matrix utilized in the SR method.

Equation (B15) can be estimated by the ADMC approach,
that is,

Sαβ
.= Re

(〈
∂αψσ

ψσ

∂βψ∗
σ

ψ∗
σ

〉
p

−
〈
∂αψσ

ψσ

〉
p

〈
∂βψ∗

σ

ψ∗
σ

〉
p

)

= Re(〈∂α ln ψσ∂β ln ψ∗
σ 〉p − 〈∂α ln ψσ 〉p〈∂β ln ψ∗

σ 〉p)

= 〈∂α ln |ψσ |∂β ln |ψσ |〉p − 〈∂α ln |ψσ |〉p〈∂β ln |ψσ |〉p

+〈∂αθσ ∂βθσ 〉p − 〈∂αθσ 〉p〈∂βθσ 〉p. (B16)

Using the detach function, we also have the relationship
already utilized in FIM formalisms with unnormalized distri-
bution p:

⊥∂2
αβ

(
ln

〈
Oσ

⊥Oσ

〉
σ∈S(p)

−
〈
ln

Oσ

⊥Oσ

〉
σ∈S(p)

)

= ⊥∂α

⎛
⎝

〈 ∂βOσ

⊥Oσ

〉
σ∈S(p)〈 Oσ

⊥Oσ

〉
σ∈S(p)

−
〈
∂βOσ

Oσ

〉
σ∈S(p)

⎞
⎠

= ⊥(〈∂αOσ ∂βOσ 〉σ∈S(p) − 〈∂αOσ 〉σ∈S(p)〈∂βOσ 〉σ∈S(p) ).

(B17)

Note the detach function at the beginning used to emphasize
this relationship is only true in value for the second derivatives
of the left-hand side.

Consider the general computational graph setup with two
graphs r and θ which gives ψσ = erσ eiθσ . Using this rela-
tionship, Eq. (B16) can be calculated as the Hessian of an

AD-aware estimator. The estimator is

Esng = ln

〈
rσ

⊥rσ

〉
σ∈S(p)

−
〈
ln

rσ

⊥rσ

〉
σ∈S(p)

+ ln

〈
θσ

⊥θσ

〉
σ∈S(p)

−
〈
ln

θσ

⊥θσ

〉
σ∈S(p)

. (B18)

This estimator can be viewed as the generalized version of KL
divergence in complex distribution space.

For the real positive wave function case, there will be no
θ term; the Hessian of Esng is just FIM/4, where FIM is
the classical Fisher information matrix, i.e., the Hessian of
conventional KL divergence.

To summarize, the natural distance measure in wave func-
tion Hilbert space is the Fubini-Study distance as in Eq. (B12).
The Hessian of it gives the inverse matrix to be applied before
the gradients utilized in the natural gradient method. From the
implementation perspective, such distance can be substituted
by the extended version of KL divergence as in Eq. (B18). In
this context, the Hessian of extended KL estimator, quantum
version of FIM, the Hessian of the Fubini-Study distance,
and the matrix required in the SR method are literally the
same thing. All these objects are connected with each other
and it is interesting to see how the SR method can emerge
in the context of natural gradient descent from information
geometry without knowledge about imaginary time evolution
by the Schrödinger equation.

It is worth noting that, in the SR method, we need to in-
verse the FIM for natural gradient descent. However, the FIM
is often peculiar for very large condition number, rendering
the inverse of the FIM numerically unstable. The singular
spectrum of the FIM has been investigated very recently
[45,57]. From the implementation perspective, the most sim-
ple workaround is adding εI on F before the inverse.
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