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The variational quantum eigensolver (VQE) is one of the most representative quantum algorithms in the
noisy intermediate-scale quantum (NISQ) era, and is generally speculated to deliver one of the first
quantum advantages for the ground-state simulations of some nontrivial Hamiltonians. However, short
quantum coherence time and limited availability of quantum hardware resources in the NISQ hardware
strongly restrain the capacity and expressiveness of VQEs. In this Letter, we introduce the variational
quantum-neural hybrid eigensolver (VQNHE) in which the shallow-circuit quantum Ansatz can be further
enhanced by classical post-processing with neural networks. We show that the VQNHE consistently and
significantly outperforms the VQE in simulating ground-state energies of quantum spins and molecules
given the same amount of quantum resources. More importantly, we demonstrate that, for arbitrary
postprocessing neural functions, the VQNHE only incurs a polynomial overhead of processing time and
represents the first scalable method to exponentially accelerate the VQE with nonunitary postprocessing

that can be efficiently implemented in the NISQ era.
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Introduction.—Quantum computation was first envi-
sioned by Feynman as a natural approach to efficiently
simulate quantum systems [1]. Equipped with error resil-
ient logical qubits in the fault-tolerant quantum computa-
tion regime [2], we can efficiently and arbitrarily precisely
prepare the ground state of any given Hamiltonian by
combining adiabatic evolution with quantum phase esti-
mation [3,4]. However, this fault-tolerant strategy requires
coherently operating an excessively large number of high-
quality physical qubits with high precision that is beyond
the realm of current technology [5]. Instead, in the noisy
intermediate-scale quantum (NISQ) era [6], practical quan-
tum computation is enabled by the hybrid quantum-
classical scheme that dramatically alleviates the quantum
hardware resources requirement to accomplish nontrivial
computational tasks [7-9]. In such a scheme, the ground-
state problem for a Hamiltonian, A, is solved by preparing
a quantum state in a parametrized quantum circuit (PQC)
U(0) as |yg) = U(0)|0). The parameters @ are optimized to
minimize (w,|H|y,) and can be trained by a classical
optimizer. This hybrid variational approach, usually called
the variational quantum eigensolver (VQE), has been
successfully applied to a wide range of molecular and
quantum spin systems [10—17], as well as tasks of excited
state search [18,19] and dynamical simulations [20-27].
Indeed, the VQE is regarded as one of the most promising
routes toward practical quantum advantage [28,29] in the
NISQ era.

To fully exploit the potential quantum advantage with
the VQE, we should design a circuit Ansatz having a
strong capacity for capturing quantum entanglements and
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correlations possibly present in the target quantum state.
Two main categories of circuit Ansatz have been proposed
for the VQE: physics inspired Ansatz and hardware
efficient Ansatz. For physics inspired Ansarz, well-
established quantum chemistry methods are adapted to
the quantum computing context. For example, probably
the most famous VQE Ansatz, unitary coupled cluster
(UCC) Ansatz [10,11,30,31] is inspired by the coupled
cluster method, a post-Hartree-Fock approach. Though the
optimized state from UCC Ansatz can, in principle, give
high accuracy when compared to the exact ground state, it
requires a very deep circuit to implement for the following
two reasons: (i) one needs to Trotterize the exponential
operator, and (ii) the limited qubit connectivity in many
chips, especially the ones with superconducting qubits,
introduces a substantial depth overhead. Note that the
circuit depth is a crucial measure in the NISQ era in order
to accommodate the relatively short coherence time of
qubits. To partially address the second issue, a hardware
efficient Ansatz has been proposed [32]. The philosophy is
to generate a quantum state by building a PQC with layers
of native quantum gates available on a NISQ device that
conforms to the connectivity of the hardware. While being
easily implementable on current quantum hardware, the
hardware efficient Ansatz has been reported to give
inferior performance and accuracy [33]. Therefore, in
the NISQ era, it is highly desired to devise novel
approaches to substantially enhance the performance of
the VQE while keeping the consumption of quantum
resources such as circuit depth and number of quantum
gates as low as possible.
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(a) Schematic work flow for the VQNHE. The output state |y) = U(0)|0) is attached with a small measurement circuit V.

Measurement on computational (Z) basis is conducted on VU(8)|0) to collect shots of bit string result as 5. With the zeroth qubit as the

star qubit (see main text for details), Os;.,_; and 15;.,_, are fed

into the classical neural network f with trainable weights ¢». The

expectation of H can then be estimated according to Eq. (9). Finally, parameters in both PQC and the neural network are optimized with
gradient based optimizer from the expectation result (I:I ). (b) Measurement protocol for H=vY »Z3X,. The star qubit corresponds to s,
and the CX gate is applied to qubit 4 since X, is in H. Meanwhile, CZ gate is omitted in the hardware level, and its effect is counted by

the prefactor s5 in the expression. (c) Measurement protocol for A

= X, X,Y;. The star qubit corresponds to s;. CX and CY gates are

applied on qubits 2 and 3, respectively, since there are X, and Y5 in H.

One promising approach is to combine modern neural
networks with quantum circuits in the hybrid quantum-
classical paradigm. A few works have attempted to jointly
train a classical neural network with a quantum computing
module in order to boost the performance of various tasks
[34-41]. In particular, the potential gain of introducing
classical post-processing to a hybrid algorithm has been
actively discussed in the field of quantum machine learning
[42,43]. Different from classification and regression, the
task for the VQE is to generate a quantum state rather than
inferring a label or scalar. Since the quantum nature of the
desired output is much harder to be embedded into a
classical postprocessing framework, very few works have
explored this possibility. In Ref. [44], the authors
applied the so-called Jastrow factor [45] P(¢) =
exp(>_y duZiZ)) to the output state |yy) of a quantum
circuit, yielding the final target state |y;) = P()[wa).
However, existing proposals to supplement the standard
VQE with 75((]5) suffer from two main drawbacks. First,
though the Jastrow factor is known for capturing quantum
correlations in variational Monte Carlo (VMC) [46,47], it is
not the most general form of postprocessing, and thus, the
expressive power of such a setup is quite limited. More
importantly, 75((]5) cannot be straightforwardly imple-
mented on a quantum computer. Existing methods pro-
posed to evaluate (y f|I:I lys) require an exponential
amount of times or resources to achieve the same meas-
urement accuracy as the standard VQE [44]. Specifically,
in the transformed Hamiltonian approach [48], the
extra Jastrow operator is absorbed into the original
Hamiltonian £, and one needs to evaluate (y|(P H P)|y).
Since there is an exponential number of Pauli strings in the
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Taylor expansion of P, one has to evaluate exponential
numbers of Pauli strings for the transformed Hamiltonian.
(See the Supplemental Material [49] for a detailed analysis
on the resources for these two approaches).

In this Letter, we introduce the variational quantum-
neural hybrid eigensolver (VQNHE) which falls into the
paradigm of variational quantum algorithms enhanced
by classical postprocessing. Our approach successfully
addresses both challenges encountered in the earlier
attempts to combine the VQE with classical postprocess-
ing: (i) the VQNHE possesses much greater expressive
power as the post-processing can be modeled by any
modern neural networks; (ii) the VQNHE utilizes the
same amount of quantum resource as the original VQE
while the classical overhead is provably polynomial in the
output range of the neural function and constant in terms
of problem size. We emphasize that the rigorously
proven polynomial efficiency of the VQNHE is highly
nontrivial as the nonunitary postprocessing overhead in
this scenario is often thought to be intrinsically exponen-
tial. Therefore, our approach presents the first scalable
method to exponentially accelerate the VQE with non-
unitary postprocessing.

Setup and method.—The schematic work flow of the
VQNHE is shown in Fig. 1(a). Suppose the output state
from the PQC U(@) is |y) = U(0)|0). We propose the
following nonunitary postprocessing operator:

F= 3 fals)s

se{0.1}"

’

(1)

where f,(s) is a parametrized function of a bitstring s.
Then the (unnormalized) target output state from the
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VQNHE s [y/;) = f|w). The aim is to minimize the energy

expectation

(wslHlwy)

<1//f\l/'f> @)

(), =

by tuning variational parameters @ in the PQC U and ¢ in
the neural network f. When £ is applied to [y), it adjusts
W, the quantum amplitude of |y) in the computational
basis s. For example, the Jastrow factor can be regarded
as a special case of Eq. (1) as f(s)=
expl— X (1 — 257) (1 = 25,)]

The key to enabling the above work flow is to efficiently
evaluate Eq. (2). Since H can be decomposed to a
summation of Pauli strings, it suffices to compute the
expectation for each Pauli string and then add them up. For
this reason, we will assume, without loss of generality, that
H is a Pauli string in the following discussions.

First, the denominator of Eq. (2) is easy to estimate from
measurements as

> Pl (3)

se{0.1}"

<V//'|V/f'> =

The measurement protocol for Eq. (3) is straightforward:
we simply measure the PQC U in the computational (Z)
basis for multiple shots for s, and compute the expectation
of |f(s)?. If the Pauli string A only contains / and Z
operators, since (s|H|s') = H,8,y, the estimation for the
numerator is also easy

Y wllf(s)PH,. (4)

se{0.1}

<Wf|H|Wf

The key advantage of the VQNHE is its efficient scheme
for evaluating (w/|H|w,) when H contains X or Y
operators. In this case, we label one of the qubits in the
Pauli string with X or Y operators as the star qubit, and we
rearrange the star qubit as the zeroth qubit in the derivation
below. We further label |3) as the bitstring that satisfies

H|s) = S(3)|5), where S = +1,4i is the sign factor for
such a basis transformation under H. For example, for
H = X,Y,Z,, |011) =101), and S(101) = —i. Since
H* =1, all eigenvalues are +1 and S(s)S(5) = 1. Thus,
the matrix form of A can be expressed as

H= Y SOE+SEBEs.  (5)

50=0,
s1:a-1€{0,13

Note that the sum is over all bitstrings but with the star
qubit fixed as sy = 0, and we use the shorthand notation
s € 0sy.,-; for simplicity. The 2" eigenvectors of H with
eigenvalue +1 have simple forms |+, sy.,_1)

[+, 81:0m1) = (0511|081 p0—1) + [151.,-1)],  (6)

[S(01:—1)|0871. 1) = [151.,-1)]- (7)

|_’s1:n—l> =

S-Sl

We restrict f to real-valued functions for now, and for the
general case of complex-valued postprocessing f, efficient
estimation is also possible (see the Supplemental Material
[49] for details). We have

()
( S FFESE)) (] + £ FE)S <§>|s><s|)|w>
SEODS |,y
=<w|< 3 f<s>f<s><+,s><+,s|——,s><—,s|>)|w>
€081 ,1
= D s PAEOFE) + o s P=f () (3)], (8)
SEO0S7. -1

where yre, = (.51.,1 ). A

To realize a measurement in the eigenbasis of H, we
attach a measurement circuit V after the original PQC U(0)
such that the computational basis measurement on the
output from VU(0)|0) corresponds to the amplitude for
|+, $1.,-1), Where the readout for the first (star) qubit
represents the eigenvalue of A and the readout for the
remaining n — 1 qubits stands for s;.,_;. Specifically, we
require V7[s) o [+, 51:,-1) s0 thatyo o = (£, 51,1 [w) =
(s|VU(@)]0). The problem is now reduced to efficiently
building a measurement circuit V which gives VT|s) «
[1051.p—1) 4 (1 = 250)H|0s,.,_;)]. The building rules for
this V circuit are (1) For all qubits present in the Pauli string
H except the star qubit, we apply a control-X/Y/Z gate
with the control being the star qubit, and the choice of the
control gate is determined by the Pauli operator acting on
the corresponding qubit in A. (Note that control-Z gate can
be omitted and replaced by counting the extra sign 1 — 2s;
in the final expression.) (2) The star qubit is measured in the
X or Y basis determined by the corresponding operator in
H, or equivalently speaking, the star qubit is attached with a
single-qubit gate: Hadamard gate in the X case, and Rx =
exp(—z/4iX) rotation gate in the Y case, and then
measured on the computational (Z) basis. We explicitly
constructed the measurement circuit V for a few represen-
tative Pauli strings H, as shown in Figs. 1(b) and 1(c). By
appending the aforementioned compact measurement cir-
cuit V to U(0) and collecting measurement results as
bitstring s, the expectation value from the quantum-neural
hybrid state is given by

a (1 =280)f(0sy.—1) f(1s15-1))) v
Hhy, = T > O
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where bitstring s in the denominator is drawn from the PQC
U, and bitsring s in the numerator is drawn from the PQC
with the measurement circuit V appended.

The extra quantum resources compared to the original
PQC for the VQE is at most m — 1 two-qubit gates, where
m is the number of X and ¥ operators in the Pauli string &,
and m=0O(1) for typical short-range interaction
Hamiltonians. Besides, the number of measurement shots
required to achieve the same accuracy as the VQE is
polynomially bounded (see the Supplemental Material [49]
for details of a rigorous proof). Now that we can efficiently
evaluate (H )y, the gradients with respect to the PQC and

the neural network can be efficiently obtained via param-
eter shift [50-52] and back propagation, respectively,
which facilitate gradient-based classical optimizers to
update parameters @ and ¢.

With the presented formalism and protocol, we have
demonstrated that the VQNHE, the combination of the
variational quantum eigensolver and classical nonunitary
neural postprocessing, gives rise to an exponential accel-
eration compared to previous methods that incorporate
nonunitary postprocessing into the VQE.

Results.—In this section, we report the performance of
the VQNHE on several benchmarks in modeling quantum
spins and molecules, including the 1D transverse field Ising
model (TFIM), 1D Heisenberg model, LiH, Hg-hexagon
and Hg-chain molecule [53]. (See the Supplemental
Material [49] for details on the setup and results for each
system.)

First, we present numerical results for quantum spin
models: the TFIM defined as Hyppg = Y ;41 ZiZis1—
> ;X;, and the Heisenberg model defined as
Hyeisenvere = 2 i1 XiXip1 + YY1 +Z,Z;11),  both
imposed with the periodic boundary condition. We apply
both the VQNHE and VQE to simulate the ground state
of these systems with N = 12 sites. The results for the
ground-state energy of these two systems are summarized
in Table. I. Note that the VQNHE provides a substantially
more accurate estimation (about 2 orders of magnitude
improvement in terms of energy estimation accuracy) of the
ground-state energy using the same amount of quantum
resources.

TABLE 1. The ground state energies obtained from both the
VQE and VQNHE with the same PQC structure for 1D TFIM and
the Heisenberg model with N = 12 sites. Relative errors com-
pared to the exact ground state are included. For both models, the
energy obtained from the VQNHE is much closer to the exact
ground state energy than the one obtained from the VQE.

Model TFIM Heisenberg model
VQE —14.914 3 x 1072) —21.393 (7 x 1073)
VQNHE —15.319 2 x 107 —21.546 (2 x 107%)
Exact —15.3226 —21.5496

—_ =
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FIG. 2. Optimized energies on the five-site TFIM model with
open boundary condition using either VQNHE (blue) and VQE
(red) approaches. Measurement-based results in noiseless, noisy
simulators, and real quantum hardware are shown with the error
bar. The vertical red and blue lines are the ideal optimized energy
values from the VQNHE and VQE, when no quantum noise or
measurement uncertainty exists. The blue line also coincides with
the exact ground state energy since the ideal VQNHE result has a
relative error in the order of 1072,

We further obtain the optimized energies from the VQE
and VQNHE algorithms simulated on IBM quantum
hardware and noisy simulators, as shown in Fig. 2. The
target model is the five-site TFIM model with an open
boundary condition. The results demonstrate that the
VQNHE works well in the presence of quantum noise
and measurement uncertainty on the real quantum
hardware.

Now, we turn to the calculation of the energy dissoci-
ation curve for LiH, another common benchmark for the

7.0 a) —— vgnhe
— vge
— exact

HF

----- chemical accuracy

-7.29

energy(Ha)
<
H
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FIG. 3. LiH dissociation curve. (a) VQNHE optimized energy
(purple), VQE converged energy (green), exact energy from full
configuration interaction (red), Hartree-Fock (HF) energy (yel-
low) obtained at different bond distances. (b) Comparison of
corresponding energy errors for VQNHE and VQE results. The
red dash line is the threshold of chemical accuracy. The cyan
vertical line is the bond distance with minimum bonding energy,
representing LiH molecule at equilibrium configuration.
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VQE. We optimize LiH qubit Hamiltonian using the
VQNHE and VQE with 20 independent runs for each
bond distance from 0.5 to 2.8 A, and the best results of each
instance are reported in Fig. 3. Both the VQNHE and VQE
utilize the same hardware efficient Ansatz. The relative
error of the VQNHE result is in the order of 107>, matching
the state-of-the-art result by restricted Boltzmann machine-
based VMC [56]. For comparison, the vanilla VQE can
only achieve a relative error around the order of 1073,

Furthermore, we apply the VQNHE on the molecular
system Hg-hexagon and Hg-chain. Via symmetry enforced
qubit encoding [57], we can simulate the corresponding
system with a ten-qubit PQC and complex-RBM based
postprocessing module. The relative errors of optimized
energy for both systems are in the order of 10~ and 1079,
respectively. Our VQNHE results are not only within
chemical accuracy, but actually outperform the coupled
cluster singles and doubles method.

Discussions.—The VQNHE presented in this Letter sits at
the intersection between the VQE and VMC [58-60]. It is
similar to the VMC setup for a complex-valued wave
function, where two computational graphs are utilized:
one is for the amplitude and the other one is for the phase
or sign structure. Since the quantum phase is harder to
characterize than the amplitude [61-63], tensor network
Ansdtze have been proposed to capture such subtlety as a
replacement of the neural network [64]. Within the VQNHE
framework, we can view the PQC U(@) as the part
responsible for learning quantum phase. Since the PQC is
quantum by nature, it is expected to better capture quantum
entanglement and learn the quantum phase structure of the
target state more efficiently. Besides, sampling from the PQC
is highly efficient as it can draw independent samples each
time without a high rejection ratio in traditional Metropolis-
Hasting sampling strategy. In summary, the VQNHE
approach can be either referred to as the neural-network
enhanced VQE or as the quantum-computing assisted VMC;
it actually combines the advantages of both.

One of the promising future directions is to combine the
VQNHE and quantum architecture search [43,65-70] or
the adaptive VQE [71-76] in which the parametrized
circuit Ansatz can be iteratively adjusted or grown to
improve the overall performance for such a hybrid work
flow. Moreover, it is worth theoretically investigating the
noise resilience of the VQNHE, as relevant evidences
emerge from hardware experiments in this work.

Conclusion.—In this Letter, we propose a VQNHE that
combines nonunitary postprocessing with the PQC to
improve upon VQE. The VQNHE uses a hybrid repre-
sentation of quantum states in order to enhance the
expressive power with limited quantum hardware resour-
ces, and it consistently outperforms the VQE in various
tasks. We also outline a feasible protocol for implementing
the VQNHE on real quantum hardware with rigorously
proven efficiency. We demonstrate that the VQE with

arbitrary nonunitary postprocessing can be accurately
carried out with only polynomial overhead: an exponential
improvement of efficiency that was deemed unlikely along
the lines of prior proposals.
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