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The precise nature of many-body localization (MBL) transitions in both random and quasiperiodic (QP)
systems remains elusive so far. In particular, whether MBL transitions in QP and random systems belong to
the same universality class or two distinct ones has not been decisively resolved. Here, we investigate MBL
transitions in one-dimensional (d ¼ 1) QP systems as well as in random systems by state-of-the-art real-
space renormalization group (RG) calculation. Our real-space RG shows that MBL transitions in 1D QP
systems are characterized by the critical exponent ν ≈ 2.4, which respects the Harris-Luck bound (ν > 1=d)
for QP systems. Note that ν ≈ 2.4 for QP systems also satisfies the Harris-Chayes-Chayes-Fisher-Spencer
bound (ν > 2=d) for random systems, which implies that MBL transitions in 1D QP systems are stable
against weak quenched disorder since randomness is Harris irrelevant at the transition. We shall briefly
discuss experimental means to measure ν of QP-induced MBL transitions.
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About one decade ago, Anderson localization in non-
interacting systems [1–3] was generalized to many-body
localization (MBL) in quantum many-body systems with
interactions [4–10]. Isolated systems in MBL phases cannot
thermalize where eigenstates thermalization hypothesis
[11–13] does not apply. In contrast to thermal systems,
entanglement entropy of highly excited eigenstates of MBL
systems obey the area law rather than volume law [14],
which renders various exotic properties such as extensive
emergent integrable operators [15,16] and protected quan-
tum order in excited states [17–19]. More intriguingly,
MBL transitions separating ergodic and MBL phases
[20–28] are so-called eigenstate phase transitions which
can occur for each highly excited eigenstate with finite
energy density. For highly excited eigenstate across a MBL
transition, entanglement entropy shifts from the volume law
in thermal phases to the area law in MBL phases. This
novel behavior cannot fit into the framework of conven-
tional equilibrium phase transitions where entanglement
entropy at finite temperature satisfies the volume law in
both sides of transitions.
Currently, there are two known mechanisms for MBL:

one by random disorder and the other by quasiperiodic
(QP) potential. The former has been extensively studied for
years, while the latter attracted increasing attention very
recently [29–37] partly due to its accessibility in cold-atom
experiments [38–41]. Recently, an exact diagonalization
(ED) study [42] indicated that MBL transitions in random
systems and in QP systems belongs to two distinct
universality classes. Nonetheless, as ED studies are limited
to models with relatively small size (L up to about 20), the
finite-size effect could be severe enough preventing us from
drawing decisive conclusions. So far, a reliable study of the

universal properties of MBL transitions in QP models with
a much larger system size is still lacking. Therefore, it is
highly desired to compute critical exponents by investigat-
ing systems with a sufficiently large size to reliably address
important questions such as (i) whether QP MBL tran-
sitions are stable or not against weak randomness, and
(ii) whether MBL transitions in QP and random systems
belong to the same universality class.
A novel real-space renormalization group (RSRG)

approach was recently developed [43–45] to investigate
critical behaviors of MBL transitions in random systems
with much larger size compared to ED. It is probably the
only numerical approach so far that obtained critical
exponents satisfying the Harris-Chayes-Chayes-Fisher-
Spencer (Harris-CCFS) bound (ν > 2=d) [46–50] for
randomness-driven MBL transitions. However, directly
employing this approach to study MBL transitions in QP

FIG. 1. The schematic RG flow of 1D interacting systems with
both QP potential and quenched randomness. Our real-space RG
analysis shows that MBL transitions induced by QP potential is
Harris stable against weak randomness.
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systems encounters serious problems. Here, we propose a
different RSRG approach by taking important microscopic
details into account, which is more suitable to study MBL
transitions in QP systems. By utilizing this improved
approach, we can access 1D QP systems with a size of
the order of 1000, which is sufficiently large to investigate
critical properties of MBL transitions. We systematically
analyze different scenarios of MBL transitions using our
RSRG approach, and come to conclusions that the critical
exponent ν ≈ 2.4 for QP-driven MBL transitions. This
value of ν is in agreement with the Harris-CCFS bound
(ν > 2=d), indicating that QP-induced MBL criticality can
survive against weak randomness, as shown in the sche-
matic RG flow in Fig. 1.
Model.—We consider the following one-dimensional

spinless fermion model with interactions:

H ¼ −
X

ij

ðtijc†i cj þ H:c:Þ þ
X

i

Wini þ V
X

hiji
ninj; ð1Þ

where c†i creates a fermion at site i, ni ¼ c†i ci is the fermion
density operator, tij labels the hopping amplitude between
sites i and j, V is the interaction between nearest-neighbor-
ing (NN) sites, andWi represents the on-site potential which
can vary from site to site. Note that Wi can be a random
potential with uniform distribution Wi ∈ ½0;W� for the
random case or a cosine potential Wi ¼ W cosð2παiþ ϕÞ
with quasiperiodicity α and phase ϕ (for simplicity, we set
the irrational number α ¼ ð ffiffiffi

5
p

− 1Þ=2 as the golden ratio
hereafter) for the QP case. Note that the QP potential has
long-range correlation as hWiWiþji ¼ 1

2
W2 cosð2παjÞ

which is in contrast to random potential without long-range
correlation. In the limit of vanishing interaction V ¼ 0, the
system with random potential is in the Anderson localization
phase for any finite randomnessW > 0. For finite interaction
V, the system with random potential would stay in the
localized phase when the interaction V is sufficiently weak
but can go across the MBL phase transitions into an ergodic
phase when V exceeds a critical value. The nature of this
MBL transition has been extensively studied [20–23,25].
Here, we shall focus on the case of QP potential. In the

limit of vanishing interaction V, the Hamiltonian with QP
potential Wi is the so-called Aubry-André (AA) model
[51,52]. The AA model has been extensively studied; it
provides an example of single-particle localization in 1D
with finite critical potential strength but without single-
particle mobility edge. There have been various general-
izations of the AA model [53–57]. It turns out that
generalized AA models usually possess single-particle
mobility edge which indicates that the original AA model
with only NN hopping is not generic in the family of QP
models. Henceforth, we consider both NN hopping t and
next-nearest-neighborhood (NNN) hopping t0 such that this
extended AA model could describe more realistic and
generic systems [38–41]. For this extended AA model with
a sufficiently strong QP potential W, all single-particle

states are localized. Then, increasing the interaction V will
presumably induce a MBL transition when V exceeds a
critical value Vc. We shall employ the real-space RG to
study this putative MBL transition to address intriguing
questions such as whether the MBL transition induced by
QP potential is robust against weak random quenched
disorder.
Real-space RG approach.—In order to study the MBL

transition in QP systems, we develop a RSRG approach by
taking microscopic details into account, which goes beyond
the previous RSRG approaches. We first briefly recapitu-
late the RSRG approach employed in studying the MBL
transition in random systems [45]. The RSRG method was
constructed by mainly employing the general nature of
criticality, namely assumptions of scaling invariance near
the MBL transition and the hierarchy of resonance clusters
which can be implemented through iterations. To determine
the structure of resonance clusters, one needs to track the
RG flow of two basic sets of simplified parameters between
every two clusters: tunneling amplitude Γij (namely, matrix
element for transitions between different clusters) and
typical energy mismatch ΔEij.
For the initial condition or data input for Γ and ΔE, the

PVP RSRG assumes ΔEij ¼ jμi − μjj (μi is the on-site
potential at i and it takes box distribution for the case of
random disorder) and Γij ¼ V exp ð−ji − jj=x0Þ (x0 is the
localization length and single-particle localization length is
usually used as an approximation). Simply using chemical
potential and sites positions as input data works well for
studying MBL transitions in random systems, but encoun-
ters serious problems for studying MBL transitions in QP
systems. In fact, if insisting to employ the original
algorithm to study QP systems, one would obtain physical
observables whose dependence with W is not smooth. For
reasons why the adiabatic approximation fails in QP
systems, see Supplemental Material [58].
To be capable of studying MBL transitions in QP

systems, we improved the RSRG algorithm by making
full use of the microscopic information of QP
Hamiltonians. Specifically, we employ true spectrums of
the single-particle Hamiltonian and localization centers of
single-particle wave functions as input data, rather than
using the simplified ones. By doing this, we avoid the
approximation caused by oversimplifications in the original
approach. For technical details of the RSRG approach
developed in the present work, see Supplemental Material
[58]. To the best of our knowledge, it is the first time that
critical exponents for MBL transitions in QP systems can
be obtained from RG analysis of models with sufficiently
large system size (L order of 1000).
Results.—In performing real-space RG calculations of

the interacting QP systems, we employ normalized entan-
glement entropy (EE) s to analyze critical behaviors of the
MBL transitions for the following two reasons. First,
entanglement entropy can be derived simply from the
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configurations and distributions of final resonance cluster
structures; second, EE satisfies the scaling form as s ¼
f½ðW −WcÞL1=ν� aroundMBL critical pointWc, where f is
some unspecified function, L is the linear size of the
system, and ν is the correlation (localization) length critical
exponent.
Our RSRG results of normalized EE for various QP

strength W and various system size L are shown in Fig. 2,
where we choose t0 ¼ 0.1t and V ¼ 0.5t. As mentioned
before, the noninteracting extended AA model with finite
NNN hopping t0 can have mobility edge in single-particle
spectrum for 1.5≲W ≲ 2.6. Note that many-body mobility
edges or exotic nonergodic metal phase may occur between
fully thermal and fully localized phases [59–64] when
weak interactions are added into noninteracting QP models
with single-particle mobility edge (SPME). To understand
the precise nature of such putative phases as well as the role
SPME plays in such phases, more future work is desired.
Nonetheless, for sufficiently strong QP potentialW that can
localize all single-particle states, a full MBL phase should
naturally emerge when weak interactions are added.
Indeed, as shown in Fig. 2, the EE for all L cross reasonably
at the putative critical point W ¼ Wc ≈ 3.36 where all
single-particle states are fully localized without single-
particle mobility edge.
As mentioned above, the EE around the transition should

satisfy the scaling form. Thus, we perform the scaling
collapse, as shown in the inset of Fig. 2, to extract the value
of the critical exponent ν [65]. The obtained result ν ¼
2.4� 0.3 for the MBL transition in QP systems without
quenched randomness is consistent with the Harris-Luck
criterion (ν > 1=d) of QP systems [49]. To show the
robustness of the obtained results, we also performed the
same type of calculations for various settings of the model,

including different interaction strength and different wave
vectors. It is remarkable that critical exponents obtained for
various settings are consistent with one another within the
error bar. This is not only a strong support to the numerical
results we obtained, but also a clear demonstration of
RSRG’s effectiveness of capturing universal properties of
MBL transitions. Moreover, this value of ν is also in
agreement with the Harris-CCFS bound (ν > 2=d), imply-
ing that the MBL transition in QP systems is Harris stable
against sufficiently weak randomness since the quenched
randomness is Harris irrelevant at the QP MBL transition.
Note that the result of ν ≈ 2.4 for QP MBL transitions in

the present work is not in accord with the one in Ref. [42],
where ν ∼ 1 was obtained through exact diagonalization
(ED) calculations of models with relatively small system
size (L ≤ 18) and where the randomness was considered as
Harris relevant due to the value of ν obtained by their ED
calculations does not respect the Harris-CCFS bound
(ν > 2=d). The result of ν of the present paper derived
from real-space RG calculations of models with system size
up to L ¼ 1000 should have significantly less finite-size
effect than ED calculations of models with system size (L
up to 20–30). To directly verify that the quenched random-
ness is Harris irrelevant at the QP-induced MBL transitions,
we further carried out RSRG calculations on QP systems in
the presence of a weak on-site randomness potential
(W0 ¼ 0.1t). With this weak quenched randomness, we
obtained the critical value of QP potential Wc ¼ 3.32�
0.02 as well as the critical exponent ν ¼ 2.5� 0.3. It is
remarkable that the critical exponent of the QP-induced
MBL transition in the presence of weak quenched random-
ness is consistent with the one without any quenched
randomness, which confirms that the QP-MBL criticality is
stable against weak randomness. Consequently, we rea-
sonably conclude that weak randomness should be Harris
irrelevant, rather than relevant, at the MBL transition of QP
systems without quenched randomness, as shown in the
schematic RG flow in Fig. 1.
If MBL transitions induced by QP and by randomness

belong to the same university class, they should feature the
same ν. Thus, we further performed RSRG calculations of
models with quenched randomness; the results of normal-
ized EE for different randomness W and different system
size L are shown in Fig. 3. From the scaling collapse shown
in the inset of Fig. 3, we obtained the critical exponent
ν ¼ 3.1� 0.3 for the MBL transitions induced by
quenched randomness. This result is quite consistent with
the one (ν ¼ 3.2� 0.3) obtained by previous RSRG studies
[43–45], which indicates that our RSRG algorithm works
well not only for QP systems but also for systems with
quenched randomness. Since the result of ν ≈ 3.1 for
randomness-induced MBL transitions is significantly dif-
ferent from the result of ν ≈ 2.4 of QP-induced MBL
transitions, we believe that it is quite likely that they belong
to two distinct universality classes. The results on critical

FIG. 2. Finite-size scaling analysis of entanglement entropy
of 1D systems with quasiperiodic potentials Wi ¼
W cosð2παiþ ϕÞ. The MBL transition is identified as the cross-
ing point of entanglement entropy s for different sizes
Wc ¼ 3.36� 0.01. The data collapse shown in the inset gives
rise to ν ¼ 2.4� 0.3. Results are obtained by averaging over
105–106 QP configurations (namely 105–106 choices of ϕ).
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behavior of both cases are summarized in Table I.
Nonetheless, due to the difference between the values of
ν for two cases are not that large after taking the error bar
into consideration, the RSRG results obtained in the present
work could not fully rule out the possibility that MBL
transitions driven by randomness and by QP potentials
belong to the same universality class.
Discussions and concluding remarks.—Note that the

normalized EE curves of the QP systems shown in Fig. 2
are less smooth than the ones of random systems shown in
Fig. 3. This may provide some insight into understanding
the difference between two seemingly distinct universality
classes. We think that the less smooth behaviors of the QP
case should be related to the multifractal properties of
single-particle spectrum and wave functions of QP systems.
In contrast to the random case where distribution of energy
mismatch between neighboring localized single-particle
eigenstates is continuous and smooth, the single-particle
level mismatch between neighboring localized wave func-
tions in QP systems possesses a self-similar feature with
several gaps between sub-bands. Consequently, due to the
fractal structure and gaps in the distribution of energy
mismatch in QP systems, initial input data as well as final
results of RSRG may show less smooth behaviors (even
cusps) compared to the random case.
We now discuss experimental ways to measure the

critical exponent ν associated with the QP-induced MBL
transitions, which could ultimately answer the question
whether the QP MBL transition is stable or not against
weak quenched randomness. One way of extracting the
critical exponent ν is to experimentally measure transport
properties in the Griffith region around MBL transitions.
Specifically, the divergent behavior of dynamical exponent
z in the Griffith region around the MBL critical point Wc
is related with ν: zðWÞ ∼ ½1=ðW −WcÞν�. z > 2 for

subdiffusive transport in Griffith region while z ¼ 2 for
diffusive transport. Despite there being no randomness-
induced rare regions in QP systems, the Griffith region still
appears around the QP-induced MBL transition [40,66,67]
since rare regions can appear from preparing initial states.
In the Griffith region of 1D QP systems, subdiffusive
behaviors should emerge. To probe subdiffusive transport
experimentally, one can measure time dependence of
the density imbalance IðtÞ, which is defined as I ¼ Ne −
No=Ne þ No with Ne=o the number of particles on even
(odd) sites of 1D lattices. If the system is prepared with all
atoms residing on even sites, the decaying behaviors of
imbalance I after a long time can be used as a sign to
distinguish between ergodic and MBL phases. In the
putative Griffith region, the imbalance I should decay in
a power law [40,44] IðtÞ ∼ t−1=z. Thus, by measuring time
dependence of imbalance I, the Griffith region and the
dynamic exponent zðWÞ as a function of W around MBL
transition Wc can be determined. From the behaviors of
zðWÞ, one can extract ν which could ultimately help to
determine the universality class of the MBL transitions in
QP systems.
In conclusion, we improved the RSRG approach to make

it more versatile to study models with qualitatively different
disorders, especially suitable for studying MBL transitions
in systems with QP potentials. Moreover, it paves one way
for further investigations of MBL criticality in various types
of models, such as the ones with longer-range hoppings,
different dimensions, or different interactions. In the
present Letter, the critical exponent ν of MBL transitions
in 1D QP systems obtained from our RSRG calculations
satisfies the Harris-CCFS bound (ν > 2=d) for random
systems, which suggests that the MBL transition in 1D QP
systems is Harris stable against weak quenched random-
ness. It would be interesting to study MBL transitions and
their universal properties in higher-dimensional QP sys-
tems by employing this RSRG approach in the future.
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FIG. 3. The finite-size scaling for entanglement entropy s of 1D
system with random potentials Wi ∈ ½0; W�. The MBL transition
occurs atWc ¼ 1.78� 0.01. The data collapse shown in the inset
gives rise to ν ¼ 3.1� 0.3. Results are obtained by averaging
over 105–106 disorder configurations.

TABLE I. The results of critical exponents obtained from our
improved algorithms of real-space RG for both randomness- and
QP-induced MBL transitions.

QP-induced
MBL

Randomness-induced
MBL

Potential Wi W cosð2παiþ ϕÞ ½0;W�
ν from RSRG 2.4� 0.3 3.1� 0.3
Lower bound of ν 1 2
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