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Variational quantum algorithms (VQAs) hold great potential for near-term applications and are promising to
achieve quantum advantage in practical tasks. However, VQAs suffer from severe barren plateau problems and
have a significant probability of being trapped in local minima. In this Research Letter, we propose a training
algorithm with random quantum gate activation for VQAs to efficiently address these two issues. This algorithm
processes effectively many fewer training parameters than the conventional plain optimization strategy, which
efficiently mitigates barren plateaus with the same expressive capability. Additionally, by randomly adding
two-qubit gates to the circuit ansatz, the optimization trajectories can escape from local minima and reach the
global minimum more frequently due to more sources of randomness. In real quantum experiments, the training
algorithm can also reduce the quantum computational resources required and be more quantum noise resilient.
We apply our training algorithm to solve variational quantum simulation problems for ground states and present
convincing results that showcase the advantages of our strategy, where better performance is achieved by the
combination of mitigating barren plateaus, escaping from local minima, and reducing the effect of quantum
noise.
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Introduction. Recently, various quantum-classical hybrid
variational algorithms, such as the variational quantum eigen-
solver (VQE) [1,2], the quantum approximate optimization
algorithm (QAOA) [3], and quantum neural networks [4],
have been proposed with the vision of establishing valuable
quantum killer apps in the noisy intermediate-scale quantum
(NISQ) era [5]. In the standard variational quantum algorithm
(VQA) setting, we minimize the expectation value of the
objective function O designed for the target problem with
respect to a variational state (ansatz) |ψ (�θ )〉 prepared by a
parametrized quantum circuit (PQC). This hybrid scheme is
accomplished with a feedback loop between classical com-
puters and quantum devices: The quantum devices repeatedly
prepare the variational state |ψ (�θ )〉 for estimation of the
expectation value of the objective function 〈ψ (�θ )|O|ψ (�θ )〉,
while the classical computers are utilized to optimize the
parameters �θ based on classical optimization strategies such
as gradient descent.

To guarantee that the VQA solution is close enough to
the exact solution for the target problem, high expressibility
of the quantum ansatz U is required. In principle, we can
increase the depth of the PQC with more quantum gates and
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training parameters or apply neural network postprocessing
modules [6,7] to achieve a higher expressibility. For VQAs on
real quantum hardware, trainability is also an important factor.
Unfortunately, there is a trade-off between expressibility and
trainability [8], and the performance of VQAs is severely lim-
ited by optimization issues such as barren plateaus [9], which
can be induced by the entanglement in the quantum circuit
[10–12] and the noise on NISQ devices [13]. The gradients
vanish exponentially with the depth of the PQC. Therefore ex-
ponential computational resources are required to accurately
estimate the value of the gradients, and a large number of
iterations is required for the VQA solution to converge. Even
the gradient-free optimization approaches are also suppressed
by the barren plateaus [14]. To mitigate the barren plateaus
and achieve better performance from the VQA, a series of
strategies have been proposed, including parameter initializa-
tion methods [15–23], a local objective function [24–26], and
a special quantum circuit ansatz [27–34].

Apart from the barren plateaus, the nonconvexity of en-
ergy landscapes and the existence of a large number of local
minima also strongly limit the trainability of VQAs [35]
and render training VQAs unscalable. The VQA solutions
provided by gradient descent can be easily trapped in local
minima which are correlated with the initialization position
and far away from the global minimum [36]. To escape from
the local minima, exponential trials with random initialization
of parameters, i.e., exponential optimization trajectories, are
required in the general case [37]. Although some strategies
have been investigated [38–42], more effective and universal
strategies are still required to better improve the trainability of
VQAs.

In this Research Letter, we propose a training algo-
rithm for VQAs with trainable gates activated randomly and
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FIG. 1. The HVA PQC for an XXZ model with four qubits: Red rectangles represent the activated two-qubit gates in which the parameters
are updated in VQE iterative optimization; white rectangles represent the unactivated two-qubit gates, which can be regarded as identity and
do not need to be implemented in real experiments. For the training procedure, firstly, we randomly activate 10% two-qubit gates with random
initial parameters θi ∈ [0, 2π ], while other unactivated two-qubit gates’ parameters remain as 0. During training, more and more two-qubit
gates are randomly activated, and their parameters will unfreeze and update. l is the PQC depth, i.e., how many times the Hamiltonian block
repeats.

progressively to overcome the above challenges. We use
random activation (RA) to represent this strategy. In our ap-
proach, the number of trainable quantum gates is effectively
much lower, and thus the barren plateaus can be efficiently
mitigated with the expressibility unchanged. Additionally, the
randomness of activating quantum gates increases the prob-
ability of escaping from the local minima. Moreover, the
quantum computational resources required and the negative
effect of quantum noise can be both greatly reduced when
experimentally realizing the VQA on real quantum hardware.

Without loss of generality, we focus on the VQE task in
this Research Letter, while our approach is applicable to other
types of VQAs. The VQE has been exploited in a variety
of contexts from quantum chemistry [43–49] and many-body
physics [2,50–56] to lattice gauge theories [1,57] and is speci-
fied by a triplet (O, |ψi〉, U (�θ )) including an objective function
O, an initial quantum state |ψi〉, and a PQC ansatz U (�θ ).
The objective function is usually chosen as the expectation
or the variance [58–60] of the system Hamiltonian operator
H , whose solution gives the ground state or the excited state,
respectively. There are many choices for PQC structures such
as the hardware-efficient ansatz (HEA) [44], the Hamiltonian
variational ansatz (HVA) [53,61–63], and the unitary coupled
cluster (UCC) ansatz [64–71].

Hamiltonian and circuit ansatz. In this Research Letter, we
utilize the proposed training algorithm to solve the ground
state energy problem of the one-dimensional (1D) antifer-
romagnetic XXZ model with periodic boundary conditions,
a representative lattice spin model in quantum many-body
physics. With convincing numerical results and detailed ab-
lation studies, we demonstrate the improved optimization
results using our approach and pin down the contributing
factors as the mitigation of the barren plateaus and a better
chance to reach the global minimum.

The Hamiltonian reads

H =
∑

i

XiXi+1 + YiYi+1 + JzZiZi+1, (1)

where X,Y, Z are Pauli matrices and Jz is the zz interaction
strength. We choose the HVA, which is rather effective for
several quantum many-body models [53,61,62], as the PQC

ansatz in this Research Letter. Specifically, a depth-l HVA
for the XXZ model is shown in Fig. 1, and the corresponding
circuit unitary is

U (�θ ) =
l∏

i=1

Ri,odd
zz Ri,odd

yy Ri,odd
xx Ri,even

zz Ri,even
yy Ri,even

xx , (2)

where Ri,odd
σσ = ∏

j exp(iθi,2 j+1,σ σ2 j+1σ2 j+2) and Ri,even
σσ =∏

j exp(iθi,2 j,σ σ2 jσ2 j+1) (σ = x, y, z). The parameters θ of
quantum gates are independent tuning parameters.

Applying the PQC U (�θ ) to the initial prepared state |ψi〉
[|�−〉 Bell state, i.e.,

⊗ N
2 −1

i=0
1√
2
(|01〉 − |10〉)2i,2i+1], we ob-

tain the output state |ψ (�θ )〉 = U (�θ )|ψi〉 and the VQE energy
E (�θ ) = 〈ψ (�θ )|H |ψ (�θ )〉 as the objective function. For plain
training, all two-qubit gates are activated from the beginning
of optimization with random initial parameters �θ sampled uni-
formly from [0, 2π ]. Then the parameters �θ are optimized by
gradient descent to reach the lowest energy 〈ψ (�θ∗)|H |ψ (�θ∗)〉,
where �θ∗ are the optimal parameters. In principle, a deeper
PQC has higher expressibility and a lower converged VQE
energy. However, barren plateau problems become more se-
vere with large PQC depth, posing a fundamental challenge to
identifying the optimal parameters �θ∗ as discussed above.

Training with random gate activation. To overcome the
challenges presented in the VQA training procedure, we intro-
duce the training algorithm with incrementally random gate
activation. Different from the plain training method, only a
small fraction of the two-qubit gates, for example, 10%, are
activated for the initial optimization iterations (i.e., the two-
qubit gates with the red color shown in Fig. 1). Meanwhile,
other two-qubit gates stay as identity gates, i.e., θ = 0 for
these unactivated gates. During the optimization, the param-
eters �θ10% of the initial 10% activated gates will be updated
to approach the optimal parameters �θ∗

10% corresponding to
the lowest VQE energy estimation 〈ψ (�θ∗

10%)|H |ψ (�θ∗
10%)〉 �

〈ψ (�θ10%)|H |ψ (�θ10%)〉. Then other random 10% unactivated
two-qubit gates are activated. Since the parameters for these
newly activated gates are set to 0 previously, the VQE en-
ergy has no sudden change for the incremental activation
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FIG. 2. The converged VQE energy in an N = 12 system for the RA training (green) and plain strategy (blue) with different PQC depths
l: (a) Jz = 0.5, (b) Jz = 1.0, and (c) Jz = 2.0. The black stars represent the averaged VQE energy, and the red lines represent the median VQE
energy across 500 independent optimization trials. The insets are zooms of VQE results with deeper PQC. The outliers beyond the caps, which
are much larger than the ground truth, are not shown (see the SM for more details about the standard box plots [73]). The performance of RA
training is much better: The mean and median of VQE energy from RA is substantially lower than that obtained from plain training, as more
trials are trapped in the local minima for plain training.

procedure. Now the parameters of the 20% activated gates
are optimized together, and this procedure repeats until all
parametrized gates are activated and the optimal parame-
ters �θ∗

100% are obtained. This approach has effectively fewer
parametrized gates and can hopefully mitigate the barren
plateaus with better VQE performance.

Vqe results comparison. We provide numerical analyses
of the performance of different training strategies, with nu-
merical implementation based on the TENSORCIRCUIT package
[72]. The results of the plain training and the RA training
are shown in Fig. 2 with varying PQC depths and Hamil-
tonian parameters (the training dynamics can be found in
the Supplemental Material (SM) [73]). The results consist
of 500 independent optimization trials on a 12-qubit sys-
tem. We use the ADAM [74] optimizer with hyperparameters
learning_rate = 0.01, decay_rate = 0.9, and decay_steps =
100, and the percentage of two-qubit gates activated each
time is 10% (results are similar for other reasonable hyper-
parameter choices, and details can be found in the SM [73].
We keep the maximal number of iterations maxiter = 5000,
which is large enough to guarantee that the two different
training approaches achieve their best performance. This is
different from the usual approach, where the converge speed
instead of the final converged position is the focus [28,31,32].
We believe our comparison is more suitable to exploit the
potential quantum advantage of VQAs.

For the RA training, there are many fewer trials trapped
in the bad local minima, and the averaged VQE energy is
much lower than that obtained from the plain training as
shown in Fig. 2. There are two sources for the advantageous
performance for the RA training approach, and we will inves-
tigate the two factors in detail below: escaping from the local
minima more frequently and mitigating the barren plateaus.

The improvement of averaged VQE energy exists for dif-
ferent PQC depths and is particularly significant for shallower
quantum circuits with l = 1, 2. Note that the barren plateaus
are not severe in such a shallow setup. Considering an op-
timization trajectory of the plain training with random initial
parameters �θ , the converged local minimum of the trajectory is
solely determined by the initialization [36] for plain training.
As long as the trajectory is trapped in a local minimum, the

VQE performance can be rather bad, provided that there are
local minima far away from the exact ground state. Instead,
if we randomly activate the gate during optimization, for the
fixed initial parameters, there are multiple different random
optimization trajectories caused by the randomness of how
to activate two-qubit gates. The extra randomness sources
greatly enlarge the parameter space that can be explored for
the optimization trajectories and efficiently help the optimiza-
tion trajectories escape from local minima more frequently.

Since the effective circuit depth (the ratio of the number
of activated quantum gates to the number of qubits) of our
algorithm with only a fraction of the number of gates is much
lower than that of a plain training algorithm, our algorithm
also helps to mitigate barren plateaus. To observe this quan-
titatively, the averaged variance of the VQE energy gradients
with respect to the parameters of the activated gates is shown
in Fig. 3. With the increase in the number of activated gates
and the system size, the averaged variance decreases exponen-
tially. The case of 100% density corresponds to the plain VQE
training where all gates are activated. Such a plain training
strategy suffers from the most severe barren plateau problems.
As shown in Fig. 3, the gradient variance can be efficiently
increased during the RA training procedure. The mitigation

FIG. 3. The averaged variance of energy gradients with respect
to the parameters of the activated two-qubit gates. The depth of the
PQC is l = 7, and the Hamiltonian parameter Jz = 1.0. The barren
plateau problems become worse with more activated gates.

L032040-3



LIU, ZHANG, JIAN, AND YAO PHYSICAL REVIEW RESEARCH 5, L032040 (2023)

of barren plateaus can also be confirmed via the better median
VQE energy of the training. The median energy is not affected
by the outlier local minima trials, and the improvement on the
median is more likely a result from mitigating barren plateaus
instead of escaping from a local minimum.

In sum, the contribution from escaping the local minimum
can be found via the mean of the VQE energy where the distri-
bution of converged energy matters, and the contribution from
mitigating barren plateaus can be identified via the median
of the VQE energy. Additionally, we have confirmed that the
improvements are statistically significant via nonparametric
tests (since the converged-value data do not meet the normal
distribution).

Layerwise activation. We carry out further ablation studies
to confirm our analysis of the advantages of RA training. A
straightforward question is what will happen if there is no
randomness in the gate activation procedure, e.g., activating
the two-qubit gates in a layerwise fashion. The barren plateaus
can also be mitigated due to the effective lower depth for
the layerwise activation idea. However, the extra randomness
source for escaping from local minima now disappears. We
consider two classes of layerwise optimization: One is the
training with layerwise appending activation (LAA), namely,
we append the new activated identity layer to the end of
the activated layers; the other is the training with layerwise
prepending activation (LPA), namely, we prepend the new
identity layer to the activated ones.

The distribution of the converged VQE results for different
training strategies (plain, RA, LAA, and LPA) is shown in
Fig. 4. When the quantum circuit is shallow, almost all the
trajectories of RA training successfully escape from the local
minima, while many trials of the other three training strategies
are trapped in local minima and lead to a larger fluctuation in
the results due to the absence of the randomness in the activa-
tion. Therefore the randomness of activating two-qubit gates
is vital and relevant for better escaping from local minima.
When the quantum circuit is deep, the VQE performance of
RA training is still much better than that of plain training as
discussed above. We have also observed that the VQE perfor-
mances of RA and LPA are very close. This result indicates
that the improvement in VQE performance with deep circuits
is mainly due to the mitigation of barren plateaus, which RA
and LPA are both capable of.

Discussion. We have demonstrated that the RA training can
efficiently mitigate the barren plateau problem and help the
optimization trajectories escape from local minima based on
convincing numerical results. As discussed in the SM [73], we
have also offered a potential explanation for the effectiveness
of RA training based on the perspective of the entanglement
phase transition. This algorithm can be naturally applied to
other practical tasks and other flavors of VQAs due to its
universal form. Additionally, it can be integrated with other
strategies [15–25,27–31,38,39,75,76] to further improve per-
formance and the solution quality of VQAs.

From a practical point of view, the training algorithm
presented here brings more benefits when considering im-
plementation on real quantum hardware in the NISQ era. In
experiments, the circuit gradients are evaluated via the param-
eter shift rule [77–80]. For a PQC with p training parameters,
we have to evaluate the observable expectation on 2p sets of

FIG. 4. The accumulated distribution of 500 converged energies
from independent optimization trials using four training strategies
based on the ADAM optimizer with decay_steps = 100 in an N = 12
system: (a) Jz = 0.5, l = 2; (b) Jz = 0.5, l = 7; (c) Jz = 1.0, l = 2;
(d) Jz = 1.0, l = 7; (e) Jz = 2.0, l = 2; and (f) Jz = 2.0, l = 7.
N (E ) is the number of trials whose converged energies are less
than E . When the quantum circuit is shallow, the VQE performance
of RA training is the best because this strategy can escape from
local minima more easily. When the quantum circuit is deep, the
VQE performances of RA and LPA are very close for Jz = 0.5 and
Jz = 1.0, and RA has the best VQE performance of the four different
training strategies for Jz = 2.0.

parameters. In the RA training scheme, the effective number
of training parameters during the optimization is much smaller
than the plain training, which greatly reduces the required
number of measurement shots. Moreover, the required number
of measurement shots for each observable is also lowered
due to the mitigated barren plateaus. Meanwhile, the number
of two-qubit gates that one is required to implement on the
hardware in RA training is also lower than in the plain training
case. Therefore the efficiency in terms of the practical quan-
tum computational resources required is a big advantage of the
RA training approach. For the experiments we conducted in
this Research Letter, roughly 500 times fewer quantum gates
were used for RA training (see the SM for more details about
the quantum resource efficiency analysis [73]).
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In terms of hardware implementation, RA training also
has better noise resilience. On the one hand, we can stop
the activation iteration earlier to achieve a better trade-off
between the circuit expressive power and the accumulated
quantum noise. On the other hand, the effectively shal-
lower circuits also suppress barren plateaus induced by
the quantum noise [13]. We show experimental results for
noisy VQE settings, and the obtained energies are sub-
stantially improved when using RA training (the numerical

results and data can be found in the SM [73]). There-
fore RA training is a practical and stand-alone training
approach that we recommend trying on noisy quantum
devices.
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