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As an intrinsically unbiased method, the quantum Monte Carlo (QMC) method is of unique importance
in simulating interacting quantum systems. Although the QMC method often suffers from the notorious sign
problem, the sign problem of quantum models may be mitigated by finding better choices of the simulation
scheme. However, a general framework for identifying optimal QMC schemes has been lacking. Here, we
propose a general framework using automatic differentiation to automatically search for the best QMC scheme
within a given ansatz of the Hubbard-Stratonovich transformation, which we call “automatic differentiable
sign optimization” (ADSO). We apply the ADSO framework to the honeycomb lattice Hubbard model with
Rashba spin-orbit coupling and demonstrate that ADSO is remarkably effective in mitigating and even solving
its sign problem. Specifically, ADSO finds a sign-free point in the model which was previously thought to
be sign-problematic. For the sign-free model discovered by ADSO, its ground state is shown by sign-free
QMC simulations to possess spiral magnetic ordering; we also obtained the critical exponents characterizing
the magnetic quantum phase transition.
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Introduction. The numerical study of quantum systems is
of vital importance, especially in the context of strongly cor-
related systems which are in general analytically intractable in
more than one dimension. Due to their exponentially growing
Hilbert space, numeric methods such as exact diagonalization
usually fail when the system size is moderately large. The
quantum Monte Carlo (QMC) method can putatively over-
come such an “exponential wall” by sampling a fraction of the
Hilbert space stochastically. The QMC method is intrinsically
unbiased, making it one of the most powerful and success-
ful methods to simulate quantum systems. Unfortunately, the
QMC method is often plagued by the notorious sign problem
when dealing with fermion systems or frustrated spin models
[1–3]. When the sign problem occurs, the simulation uncer-
tainty increases exponentially with the system size and inverse
temperature, rendering it infeasible in studying systems at low
temperature or with large size [4–10]. It has been desired
for decades to solve the sign problem of interacting quantum
models.

Tremendous progress has been made to solve the sign
problem by identifying sign-free QMC schemes for quantum
models with certain symmetries [11–15] (see, e.g., Ref. [16]
for a recent review). In studying these fermion models by
the sign-problem-free QMC method, fruitful physics has
been revealed (see, e.g., Refs. [17–53]). Nonetheless, generi-
cally solving the sign problem of quantum models is almost
impossible as it has been proved that the sign problem
complexity is NP-hard [54]. Moreover, it was shown re-
cently that interacting models whose ground states feature
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certain properties such as a gravitational anomaly may have
an intrinsic sign problem [55–58]. Fortunately, for a given
specific quantum model it is still possible to solve or mit-
igate its sign problem. Efforts in this direction have been
made recently; sign problem mitigation was studied using ba-
sis transformation [59–65], Lefschetz thimbles [66–68], and
machine learning techniques [69–71]. However, a universal
framework for solving or mitigating the sign problem is still
lacking.

Here, we fill in this gap by constructing a general frame-
work of sign optimization in the determinant quantum Monte
Carlo (DQMC) method. The DQMC method was introduced
by Blankenbecler, Scalapino, and Sugar (BSS) [72] and
has been extensively used in simulating interacting fermion
models. Note that the severity of the sign problem in the
DQMC method crucially depends on the scheme of Hubbard-
Stratonovich (HS) transformation. Different forms of HS
transformations were proposed in the early stages of devel-
oping the DQMC method [5,73–77]. Nonetheless, previous
HS transformations employed in simulations are quite limited
in form and are constrained to no spatial dependence. It is
desired to construct sufficiently general HS transformations
and then find the optimized one for the sign of a given model.
In this Research Letter, we propose a general framework
to realize sign optimization by parametrizing HS transforms
continuously and optimizing the sign using automatic differ-
entiation (AD) [78–80]. We call it “automatic differentiable
sign optimization” (ADSO). (AD is a powerful method for
optimization that is widely encountered in machine learning
and features various applications in computational physics
[81–90].) ADSO is a general framework for mitigating the
sign problem, applicable to most quantum lattice fermion
models. We believe that ADSO will shed light on the nature
of the sign problem.
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We further demonstrate the effectiveness of the general
ADSO framework by applying it to the Rashba-Hubbard
model (the usual Hubbard model plus Rashba couplings) on
a honeycomb lattice. Although the Rashba-Hubbard model
at half filling was known to be sign-problematic [91], we
show that its sign problem can be significantly mitigated by
ADSO, which leads power-law acceleration. More remark-
ably, with the assistance of ADSO, we find a sign-free point
in the model. This leads to an exponential acceleration in
simulations and allows one to reliably obtain its physical
properties by the sign-free QMC method. For the sign-free
model identified by ADSO, its ground state is shown by large-
scale QMC simulations to possess spiral magnetic ordering
(as shown in Fig. 3 below). We further obtained critical expo-
nents characterizing the quantum phase transition between the
Dirac semimetal at weak Hubbard interaction and the spiral
magnetic ordered state at strong interaction.

The DQMC method and the sign problem. The DQMC
method is widely used in simulating interacting fermion mod-
els. To study equilibrium properties of an interacting fermion
model described by Hamiltonian Ĥ = Ĥ0 + ĤI with Ĥ0 being
the noninteracting term and ĤI being the quartic or interacting
term, one normally computes the expectation value of some

observable Ô: 〈Ô〉 = Tr(Ôe−βĤ )
Tr(e−βĤ )

, where β = 1/T is the inverse
temperature. Using the Suzuki-Trotter decomposition [92,93]
along the imaginary time direction, we obtain the density ma-
trix e−βĤ = ∏L−1

l=0 e−�τ Ĥ � ∏L−1
l=0 e−�τ Ĥ0 e−�τ ĤI , where β =

L�τ . To deal with the quartic term ĤI , one can convert it into
quadratic forms by performing HS transformations; the price
to pay is the introduction of auxiliary fields. A general form
of HS transformation is given by

e−�τ ĤI =
∑

s

η(s)eV̂ (s), (1)

where s represents auxiliary fields, V̂ (s) = c†V (s)c are
quadratic fermion operators with the matrix V (s) and fermion
creation operators c† (indices in c† are implicitly included),
and η(s) is a prefactor. For simplicity we assume that s take
discrete values, though continuously valued auxiliary fields
[94] can also be treated in ADSO. With HS transformation at
every time slice l , we obtain the HS decoupled form of the
density matrix: e−βĤ = ∑

s

∏L−1
l=0 η(sl )e−�τ Ĥ0 eV̂ (sl ) =∑

s ρ̂s,
where s={sl} represent an auxiliary-field configuration.

Then, the expectation value of observable Ô is given
by 〈Ô〉 =

∑
s w(s)O(s)∑

s w(s) , where O(s) is the expectation of Ô
in the auxiliary-field configuration s and w(s) = Tr(ρ̂(s)) =
η(s) det(I + ∏L−1

l=0 eK eV (sl ) ) is the Boltzmann weight of
auxiliary-field configuration s with K being the matrix
obtained from −�τ Ĥ0 = c†Kc and η(s) = ∏L−1

l=0 η(sl ). To
obtain 〈Ô〉 by the QMC method, one computes the expectation
of O(s) with s sampled from an un-normalized distribution
w(s), namely, 〈Ô〉 = 〈O(s)〉s∼w(s). However, there is no guar-
antee that w(s) is always positive. When w(s) can take both
positive and negative (sometimes complex) values, we have
the so-called sign problem.

When the sign problem appears, the absolute value of w(s)
can be used to sample the configurations by absorbing the
sign or phase factor eiϕ(s) = w(s)/|w(s)| into observables:

〈O(s)〉s∼w(s) = 〈eiϕ(s)O(s)〉s∼|w(s)|
〈eiϕ(s)〉s∼|w(s)|

, where the denominator and nu-
merator can be calculated stochastically using the Markov
chain Monte Carlo method with the auxiliary fields sampled
from the distribution |w(s)|. The denominator is the so-called
average sign S in the QMC method: S ≡ 〈eiϕ(s)〉s∼|w(s)| =∑

s w(s)∑
s |w(s)| . As the partition function Z = Tr(e−βĤ ) = ∑

s w(s)
is always positive, the average sign S must be positive, and it
can be easily proved that 0<S�1. It was observed [4] that the
average sign decays exponentially with system size N and in-
verse temperature β as S ∼ e−κNβ for sufficiently large N and
β, where κ is a constant. For the sign-problematic (sign-free)
QMC method, κ > 0 (κ = 0). When the sign problem occurs,
to obtain the value of 〈Ô〉 within a given accuracy, the needed
QMC simulation time M increases exponentially with size and
inverse temperature: M ∼ 1

S2 ∼ e2κNβ . This exponential com-
plexity greatly hinders the feasibility of applying the QMC
method to study interacting systems with large size or low
temperature; reducing κ means sign mitigation and power-law
acceleration. When the sign problem is solved (namely, what
we have is sign-free), M is reduced to power-law complexity,
M ∼ N3β; solving the sign problem represents exponential
acceleration.

The ADSO framework. The average sign S or the prefactor
κ discussed above is not an intrinsic property of a quantum
model; instead it crucially depends on how the HS transforma-
tion is performed in the DQMC method. For a given model, a
smaller κ implies a less severe sign problem. In other words,
mitigating the sign problem is equivalent to reducing κ by
identifying an optimal HS transformation. Suppose we have a
set of possible HS transformations that can be parametrized by
continuous parameters ξ; the form of the HS transformation in
Eq. (1) now becomes

e−�τ ĤI =
∑

s

η(ξ, s)eV̂ (ξ,s) =
∑

s

η(ξ, s)ec†V (ξ,s)c. (2)

Consequently, w(ξ, s) = η(ξ, s) det[I + ∏L−1
l=0 eK eV (ξ,sl )],

S(ξ), and κ (ξ) can all depend on the HS parameters ξ. Sign
mitigation becomes an optimization problem in the parameter
space of ξ.

Here, we choose ln S instead of S as our objective function
for optimization and would like to maximize ln S (equiva-
lently maximizing S). We do not use S directly because it
may lead to vanishingly small gradients due to the possible
exponential smallness of S. Using the fact that the partition
function Z of a given model is independent of ξ, we obtain the
differentiation of ln S as d ln S = −Re〈 dw(ξ,s)

w(ξ,s) 〉s∼|w(ξ,s)| (see
the Supplemental Material (SM) for details [95]). Note that
sign averaging is not involved here, which means computing
the gradients itself is actually sign-free. It is interesting that
gradients of ln S could be efficiently and reliably calculated
even though it is difficult to compute S accurately. Remark-
ably, the ADSO framework itself is sign-free; thus the ADSO
framework can be directly applied on large-size systems of
interest. See the SM for details [95] of computing the differ-
entiation dw(ξ,s)

w(ξ,s) using AD. It turns out that only very limited
computational resources in addition to the standard DQMC
algorithm are required in our ADSO framework.
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Now we have all the ingredients to calculate the gradients.
It is worth noting that we shall collect the gradients of many
samples similar to previous methods of combining AD with
Monte Carlo sampling [90,96,97]. Stochastic gradient descent
(SGD) is suitable in our case to optimize the target function
ln S since the gradients are calculated in a stochastic way: ξ →
ξ + δ∇ξ ln S, where δ is the learning rate.

The honeycomb Rashba-Hubbard model. We now apply our
general ADSO framework to the honeycomb lattice Hubbard
model with Rashba spin-orbit couplings [98]. The Hamilto-
nian of the honeycomb Rashba-Hubbard model at half filling
is given by

Ĥ = −t
∑
〈i j〉

c†
iαc jα + λR

∑
〈i j〉

iẑ · (σαβ × d i j )c
†
iαc jβ

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (3)

where c†
iα creates an electron on site i with spin polariza-

tion α = ↑,↓, niα = c†
iαciα , 〈i j〉 labels the nearest-neighbor

(NN) sites i and j, σ represent Pauli matrices, and d i j is
the vector pointing from site i to site j. We set the hopping
t = 1 as the energy unit. λR is the Rashba spin-orbit coupling,
and U is the Hubbard interaction. This model is relevant
to single-layer graphene on a substrate or an interface; for
instance, the Rashba spin-orbit coupling has been observed
in a graphene interface [99,100]. The model is invariant under
the particle-hole transformation ciσ → (−1)iσc†

iσ̄ ; it describes
a system at half filling. This model is known to be sign-free
only when λR = 0. For any λR > 0, this model was believed
to be sign-problematic [91]. A natural question to ask is what
HS transformation can give rise to the most mitigated and even
solved sign problem for λR > 0.

For the repulsive Hubbard interaction, we consider a gen-
eral HS transformation with the auxiliary fields on each
site i coupled to spin operators along the direction ni =
(sin θi sin φi, sin θi cos φi, cos θi ) with two continuous param-
eters θi and φi [77]:

e−�τU (ni↑− 1
2 )(ni↓− 1

2 ) = 1

2
e−U�τ/4

∑
si=±1

eλsic
†
i σ·nici , (4)

where cosh λ = exp(U�τ/2) and si is the auxiliary field.
Since si = ±1, the HS parameters ni feature the equivalence
ni ≡ −ni; consequently, hereinafter we can assume nz

i � 0 for
any i. For repulsive Hubbard interactions, uniform ni = ẑ for
all i has been chosen conventionally. However, in trying to
optimize for the best HS transformations, the ADSO frame-
work will allow spatially nonuniform ni, which turns out to be
crucial for mitigating or solving the sign problem of a model
which was conventionally thought to be sign-problematic.

First, we apply ADSO to the Rashba-Hubbard model with
λR = 1.0 and U = 6.0 to test the performance of the method.
For the 3 × 3 × 2 lattice and starting from randomly chosen
ni, we found that the optimized ni is not uniform spatially,
namely, ni = (0, 0.57, 0.82) for the i ∈ A sublattice and ni =
(0,−0.57, 0.82) for the i ∈ B sublattice as shown in the inset
of Fig. 1(a). Inspired by the optimal pattern obtained for
the small system, we constrain the HS transformations to
(θi, φi ) = (θ, 0) for the i ∈ A sublattice and (θi, φi ) = (−θ, 0)

FIG. 1. Results of ADSO for the Rashba-Hubbard model on the
honeycomb lattice with λR = 1.0 and U = 6.0. Here, we fix φi = 0
and θA,i = −θB,i = θ , which means θ is the only variational HS
parameter. The corresponding pattern of ni is shown in the inset
of (a) (projected to the xy plane). Flow of HS parameters θ (a) and
sign optimization results (b) for models with 3 × 3 × 2, 4 × 4 × 2,
and 5 × 5 × 2 lattice sites (periodic boundary condition). In each
iteration, the gradient is averaged using 336 × 100 samples, where
336 is the number of parallel Markov chains. The optimized val-
ues of parameters θ are nearly the same for different system sizes.
(c) The scaling of sign average S vs N ; (d) the scaling of sign average
S vs β.

for the i ∈ B sublattice, where 0 � θ � π
2 can vary to maxi-

mize the average sign. As shown in Fig. 1(a), we find that θ

are converged to almost the same value for larger system sizes.
This indicates that the optimized HS transformation does not
change significantly with the system size; consequently, the
optimized pattern obtained for relatively small system size can
be directly used to perform QMC simulations on larger system
size.

Moreover, as shown in Fig. 1(b), the larger the system size
is, the more the sign problem improves. This indicates that the
optimized HS transformation can reduce the prefactor κ com-
pared with the uniform ni = ẑ scheme. Since the Monte Carlo
(MC) computation time M scales as M ∼ 1

S2 ∼ e2κNβ , sign
mitigation can be quantitatively characterized by how much
the exponential prefactor κ is reduced from optimizing HS
transformations. We use κ∗ (S∗ ∼ e−κ∗Nβ and M∗ ∼ e2κ∗Nβ)
to denote its value in the optimized HS transformation scheme
and κ0 (S0 ∼ e−κ0Nβ and M0 ∼ e2κ0Nβ) to denote the value
in the spatially uniform HS scheme without optimization.
Then, the computation is power-law accelerated from M0 to
M∗ ∼ Mr

0, where r = κ∗/κ0. As shown in Figs. 1(c) and 1(d),
by comparing the scaling of the average sign S versus β and
N , between the previously used HS scheme and the ADSO
optimized one, we obtain r = κ∗/κ0 ≈ 0.7. The power-law
acceleration with r ≈ 0.7 can lead to tremendous acceleration
especially when the system is large or the temperature is

L241109-3



ZHOU-QUAN WAN, SHI-XIN ZHANG, AND HONG YAO PHYSICAL REVIEW B 106, L241109 (2022)

FIG. 2. Automatic sign optimization for the Rashba-Hubbard
model with different parameters on the honeycomb lattice with
L = 3, 4 (open boundary condition) and HS schemes for sign-free
points. Here we choose β = 5, U = 6 and fix t = 1. (a) Optimized
sign compared with the sign of the commonly used uniform sz HS
channel. (b) Sign-problem-free pattern of HS parameters n for the
plain Hubbard model (λR = 0), where red  represent that n is
pointing in the ẑ direction (it is indeed the uniform sz channel).
(c) Sign-problem-free pattern of HS parameters n for the Rashba-
Hubbard model at λR/t = √

2. Arrows represent the projection of
n in the xy plane. As indicated by the shaded region, n manifest a
periodicity of 2 × 2.

low. For instance, for the lattice with N = 3 × 3 × 2 = 18
sites and inverse temperature β = 20.0, the acceleration is al-
ready huge, and the computation is about M0/M∗ ∼ 107 times
faster.

The sign-free point identified by ADSO. We further apply
the ADSO method to the honeycomb Rashba-Hubbard model
for various values of λR, as shown in Fig. 2(a). It was pre-
viously known that the model is sign-free only for λR = 0
(fixing t = 1). For λR = 0, the sign-free HS transformation
is successfully found by ADSO, and it is indeed a uniform
ni = ẑ pattern, as shown in Fig. 2(b). When λR is increased
from zero to finite values, the optimized sign is shown as in
Fig. 2(a). Surprisingly, we notice that for λR = 1.4 the average
sign has been optimized to 0.996, which is very close to 1
(an average sign equal to 1 means that it is sign-free). The
optimized sign being so close to 1 indicates that there may
be an exactly sign-free point around this parameter region.
Indeed, we find that λR = √

2 is in fact an exactly sign-free
point in the Rashba-Hubbard model using the HS transforma-
tion shown in Fig. 2(c) (see the SM for the exact proof [95])
and this sign-free point was clearly indicated from the ADSO
optimized sign being extremely close to 1. This successful
example of solving the sign problem implies that ADSO has
the potential possibility of helping people notice or identify
new sign-free models.

For the sign-free point λR = √
2, we can perform large-

scale QMC simulations to obtain reliably its quantum phase

(a)

(b) (c)

FIG. 3. The Rashba-Hubbard model at λR/t = √
2. (a) Finite-

size scaling of correlation ratio R = 1 − SAA
Q∗+δq/SAA

Q∗ , where SAA
Q is the

spin structure factor defined as 1
L2

∑
x1,x2

eiQ·(x1−x2 )〈SA(x1) · SA(x2)〉,
Q∗ = �M, and δq = a/L with a being the reciprocal lattice constant.
Inset: Data collapse of R and m2 ≡ SAA

Q∗ /L2 using the critical value
Uc and the exponent ν, η extracted from the data of L = 12, 18, 24
using the method in Refs. [101,102]. Here we choose β = L such
that we can approach zero temperature in the thermodynamic limit.
(b) Contour plot of single particle gap of the Rashba-Hubbard model
with U = 0. It clearly shows eight two-component Dirac fermions in
the Brillouin zone with two at the K, K ′ point and six in the middle
of �-K , �-K ′. (c) Visualization of magnetic order at U > Uc. This
magnetic order manifests a periodicity of 2 × 2 as shown by the
shaded region. (This visualization is based on spin-spin correlations
in different directions; see SM for details [95].)

diagram as a function of U , as shown in Fig. 3(a). For
0 < U < Uc, the ground state is a Dirac semimetal with
eight Dirac points (two-component Dirac fermion) as shown
in Fig. 3(b). For U > Uc, the ground state develops a spi-
ral magnetic order as is shown in Fig. 3(c). This phase
transition should belong to the Nf = 16 (using the conven-
tion in Ref. [43]) chiral Heisenberg Gross-Neveu-Yukawa
(GNY) universality class [103]. From the finite-size scal-
ing analysis of our QMC results, we obtain that the critical
point is at Uc = 4.07(3) with the correlation-length exponent
ν = 0.94(7) (correlation length ξ ∼ |U − Uc|−ν) and order-
parameter anomalous dimension η = 0.82(2). We highlight
that these critical exponents of the Nf = 16 chiral Heisenberg
GNY universality class are obtained from sign-free QMC sim-
ulations (QMC results of critical exponents of the Heisenberg
GNY universality class in (2+1)D were obtained only with
smaller Nf [43,51]).

As can be seen from the results above (both sign-mitigated
and sign-solved cases), the optimized HS transformation, un-
like the commonly used uniform ni = ẑ decoupling scheme,
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is not spatially uniform. The optimal pattern of ni can be
different for different model parameters, which may be related
to the properties of its underlying spin correlations of the
ground states; for the two sign-free cases (λR = 0 or λR =√

2), the optimal patterns are indeed directly related to the
magnetic ordering at strong U .

Discussion and concluding remarks. The general frame-
work of mitigating the sign problem in the DQMC method
proposed in this Research Letter can be used in principle in
any interacting quantum lattice models as long as its HS trans-
formation can be continuously parametrized. For instance, by
enlarging the auxiliary-field space or allowing hybrid decou-
pling schemes, further sign optimization may be obtained (see
the SM for details [95]). Moreover, the general idea of AD
can be further applied to other types of QMC methods in-
cluding world-line MC and hybrid MC whenever continuous
parametrization can be implemented.

ADSO provides a general framework to mitigate the sign
problem of interacting models; it worked remarkably well for
the Rashba-Hubbard model which leads to power-law accel-
erations in general and even exponential acceleration for the
sign-free point found here. It is desirable to apply ADSO in
the future to other strongly correlated models whose solutions
remain elusive so far. Moreover, ADSO has the potential
possibility of identifying new sign-free models of interacting
fermions.
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