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Entanglement asymmetry, which serves as a diagnostic tool for symmetry breaking and a proxy for
thermalization, has recently been proposed and studied in the context of symmetry restoration for quantum
many-body systems undergoing a quench. In this Letter, we investigate symmetry restoration in various
symmetric random quantum circuits, particularly focusing on the U(1) symmetry case. In contrast to
nonsymmetric random circuits where the U(1) symmetry of a small subsystem can always be restored at
late times, we reveal that symmetry restoration can fail in U(1)-symmetric circuits for certain weak
symmetry-broken initial states in finite-size systems. In the early-time dynamics, we observe an intriguing
quantum Mpemba effect implying that symmetry is restored faster when the initial state is more
asymmetric. Furthermore, we also investigate the entanglement asymmetry dynamics for SU(2) and Z2

symmetric circuits and identify the presence and absence of the quantum Mpemba effect for the
corresponding symmetries, respectively. A unified understanding of these results is provided through the
lens of quantum thermalization with conserved charges.
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Introduction—Quantum thermalization is an important
topic of fundamental interest. The thermalized state
of a chaotic quantum many-body system is linked to the
unitary evolution by the eigenstate thermalization
hypothesis (ETH) [1–5]. Specifically, the reduced density
matrix of a small subsystem A equilibrates to a canonical
ensemble: ρA ∝ e−βĤA where ĤA is the system-of-interest
Hamiltonian. Furthermore, if ĤA respects U(1) symmetry,
the subsystem equilibrates to a grand canonical ensemble:
ρA ∝ e−βĤA−μQ̂A with μ denoting the chemical potential
and Q̂A representing the conserved charge operator.
Consequently, ½Q̂A; ρA� ¼ 0, and the weak symmetry (also
known as average symmetry) for subsystem A can always
be restored even with a U(1) symmetry-broken initial state.
In other words, symmetry restoration for the small sub-
system under quench is an indicator of quantum thermal-
ization. This relation also holds for non-Abelian
symmetries with noncommuting conserved charges [6].
In addition to the late-time or equilibrium behaviors,

nonequilibrium dynamics have attracted significant atten-
tion due to rich interesting phenomena. One example is the
counterintuitive Mpemba effect [25], which states that hot
water freezes faster than cold water and has been extended
in various systems [26–33]. Quantum versions of the
Mpemba effect have also been extensively investigated
[34–42] where an external reservoir driving the system out

of equilibrium is necessary for the emergence of Mpemba
effects. Recently, an intriguing anomalous relaxation phe-
nomenon has been observed in isolated quantum integrable
systems [43]. The U(1) symmetry-broken initial states are
evolved with the U(1) symmetric Hamiltonian and the weak
U(1) symmetry restoration for subsystem A is observed
when the subsystem size jAj is less than half of the total
system size N [44–54]. More importantly, symmetry
restoration occurs more rapidly for more asymmetric initial
states. This phenomenon is dubbed as the quantum
Mpemba effect (QME) [43] and has been demonstrated
experimentally on quantum simulation platforms [55].
However, a comprehensive investigation of symmetry
restoration and QME in generic chaotic systems is lacking.
Previous work has demonstrated that the U(1) symmetry

of ρA with jAj < N=2 can be restored when the whole
system is the random Haar state [56], which can be
regarded as the output state of random Haar circuit without
U(1) symmetry at late times. This raises a natural question
regarding the existence of the QME in the dynamics of
random Haar circuits with and without the corresponding
symmetry. Moreover, previous investigations on QME have
primarily focused on the U(1) symmetry restoration in
integrable Hamiltonian dynamics [43,55,57,58] where the
theoretical explanations of QME have hinged on integra-
bility [58]. Although the nonequilibrium dynamics after a
global Z2 symmetric quantum quench has been investigated
before [59], no QME has been observed. Therefore, it
remains an open question of whether QME manifests in the
dynamics for other alternative symmetry restoration and
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whether symmetric random quantum circuits [60–76] play
a similar role as the quenched Hamiltonian dynamics. Last
but not least, a unified theoretical understanding of sym-
metry restoration, the QME, and its relation with thermal-
ization is still elusive.
In this Letter, we investigate the dynamics of subsystem

symmetry restoration across a range of symmetric and
nonsymmetric quantum random circuits, considering dif-
ferent initial states. To quantify the degree of symmetry
breaking in subsystem A, we employ the concept of
entanglement asymmetry (EA) [43,54,59,77], which has
been extensively studied as an effective symmetry broken
measure in out-of-equilibrium many-body systems [58,78]
and quantum field theories [79–81]. It is defined as

ΔSA ¼ SðρA;QÞ − SðρAÞ: ð1Þ

Here, SðρAÞ represents the von Neumann entropy of
subsystem ρA, and ρA;Q ¼ P

q ΠqρAΠq, where Πq is the
projector to the qth eigensector of the corresponding
symmetry operator g. In the case of U(1) symmetry, the
symmetry operator g is the total charge operator in

subsystem A, Q̂A ¼ PjAj
i σzi , and the computational basis

coincides with the eigenbasis of Q̂A. We also extend the
definition of EA to SU(2) cases for the first time, where a
carefully designed unitary transformation is required for ρA
to properly address noncommuting conserved charges [6].
It is worth noting that ΔSA ≥ 0 by definition and it only
vanishes when ρA is block diagonal in the eigenbasis of the
symmetry operator. Symmetry restoration as indicated by
ΔSA ¼ 0 is also a necessary condition for quantum
thermalization due to the thermal equilibrium form of
the mixed state. Because of the randomness in circuit
configurations, we focus on the average EA, E½ΔSA�. In the
theoretical analysis, we utilize Rényi-2 EA, E½ΔSð2ÞA �, by
replacing von Neumann entropy with Rényi-2 entropy for
simplicity, which shows qualitatively the same behaviors
as EA.
Based on the rigorous theoretical analysis and extensive

numerical simulations, we have revealed that the subsystem
symmetry restoration of the U(1)-symmetric circuits
depends on initial states, which significantly differs from
the case of random Haar circuits where the dynamics are
agnostic of different initial states. Specifically, when
starting from a tilted ferromagnetic state with a sufficiently
small tilt angle θ, we demonstrate that the late-time EA
remains nonzero in finite-size systems, indicating that the
final state remains symmetry broken. The persistent
symmetry breaking in finite-size systems is a universal
feature for U(1) symmetric dynamics [6]. Conversely, the
symmetry can always be restored when the initial state is
more U(1)-asymmetric with a large tilt angle as long
as jAj=N < 1=2.

More importantly, we have also observed the emergence
of QME in the EA dynamics of U(1)-symmetric circuits,
which is absent in random Haar circuits without symmetry.
The emergence of QME in chaotic systems can be under-
stood through the lens of quantum thermalization. The
thermalization speed varies significantly across different
charge sectors [6] (see also results for thermalization in
U(1)-symmetric circuits [82,83]). Specifically, charge sec-
tors with small Hilbert space dimensions do not obey ETH
and thus do not thermalize or thermalize slowly.
Consequently, symmetry restoration is slow when the
subsystem of the initial state has a large overlap with
the charge sector of a small dimension. Therefore, a QME
occurs when the state with a smaller initial EA simulta-
neously has a larger overlap with the small charge sector
resulting in slow thermalization, as in the case of the tilted
ferromagnetic state. In sum, the mechanism behind QME is
attributed to slower thermalization induced by more sym-
metric initial states. We have validated this theoretical
understanding with different initial states and internal
symmetries.
Setup—For the U(1) symmetry restoration, inspired by

the previous studies [43], we adopt a tilted ferromagnetic
state as the initial state (see more numerical results with
different initial states in the SM [6]) defined as

jψ0ðθÞi ¼ e−i
θ
2

P
j
σyj j000…0i; ð2Þ

where σyj is the Pauli-Y operator on jth qubit and the tilt
angle θ determines the charge asymmetric level of the
initial states: when θ ¼ 0, jψ0ð0Þi ¼ j000…0i is U(1)-
symmetric and ΔSA ¼ 0 for any subsystem A. As θ
increases, ΔSA also increases until it reaches its maximal
value at θ ¼ π=2.
As shown in Fig. 1, the initial state undergoes the unitary

evolution of random quantum circuits with periodic

FIG. 1. Random circuit with six qubits. The initial state is
chosen as the tilted ferromagnetic state and the blue rectangle
represents random two-qubit gates in the even-odd brick-wall
pattern. For U(1)-symmetric circuits, each two-qubit gate respects
U(1) symmetry, resulting in a block diagonal structure for the
unitary matrix of quantum gates.
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boundary conditions where two-qubit gates are arranged in
a brick-wall structure. In the case of nonsymmetric circuits,
each two-qubit gate is randomly chosen from the Haar
measure. For the U(1)-symmetric case, the matrix for each
two-qubit gate is block diagonal as shown in Fig. 1 and
each block is randomly sampled from the Haar measure.
One discrete time step Δt ¼ 1 includes two layers of two-
qubit gates. We calculate the EA dynamics E½ΔSA� of
subsystem A averaged over different circuit configurations
to monitor the dynamical and steady behaviors of sym-
metry restoration.
Symmetry restoration in the long-time limit—We

approximate the long-time limit of random circuit ensemble
with a simpler ensemble U for a single random unitary U
acting on all qubits to compute Rényi-2 EA [6,84–87]. For
the nonsymmetric random circuit evolution, U constitutes a
global 2-design for the Haar measure. Consequently, the
average Rényi-2 EA at late time is [56]

E½ΔSð2ÞA � ≈ − log

"
1þ 22jAj−N=

ffiffiffiffiffiffiffiffiffi
πjAjp

1þ 22jAj−N

#
: ð3Þ

With largeN, E½ΔSð2ÞA � approaches zero if jAj < N=2, while
it sharply changes to a nonzero value log

ffiffiffiffiffiffiffiffiffi
πjAjp

if
jAj > N=2. Therefore, the broken symmetry of subsystem
A with jAj < N=2 can always be restored by the non-
symmetric random circuits at a late time, regardless of the
initial states.
For the U(1)-symmetric random circuit evolution, U is a

global 2-design for the composition of the Haar measures
over each charge sector [85–87]. The average Rényi-2 EA
can be accurately obtained by calculating certain summa-
tions of polynomial numbers of binomial coefficient
products, which arise from counting charge numbers [6].
Under the condition of large system size and large tilt angle,

a simplified analytical form of E½ΔSð2ÞA � can be obtained by
approximating the binomial coefficients with the Gaussian
distributions,

E½ΔSð2ÞA � ≈ − log

"
1þ gðθÞ2jAj−N= ffiffiffiffiffiffiffiffiffi

πjAjp
1þ gðθÞ2jAj−N

#
; ð4Þ

which resembles the nonsymmetric case in Eq. (3) except
for the θ-dependent base factor

gðθÞ ¼ 2 exp

�
−
1

2
log2

�
tan2

θ

2

��
: ð5Þ

If θ ¼ 0.5π, Eq. (4) coincides with Eq. (3), and thus the
late-time EA are the same as shown in Fig. 2(a). If the tilt
angle remains large but deviates from 0.5π, Eq. (4)
indicates that the main characteristic remains unchanged
compared with the nonsymmetric case: the symmetry is

restored for a small subsystem of jAj < N=2 but still
broken for jAj > N=2.
However, if the tilt angle is sufficiently small, the

Gaussian approximation fails. We rely on direct estimation
of the summations of binomial coefficients [6], which
shows that for small tilt angles such as θ < 0.1π, E½ΔSð2ÞA �
will converge to a significant finite value in the long-time
limit even for jAj < N=2 and large finite N as shown in
Fig. 2(b). In other words, when the symmetry breaking in
the tilted ferromagnetic initial state is relatively weak, it
becomes challenging to fully restore the subsystem sym-
metry through the U(1)-symmetric random circuit evolu-
tion. Conversely, those initial states exhibiting more severe
symmetry breaking can restore the symmetry successfully
instead. This phenomenon is reminiscent of an extreme
limit of the QME, where instead of restoring slowly, the
symmetry does not fully restore for initial states with weak
symmetry breaking. We remark that the persistent sym-
metry breaking is a universal feature of U(1)-restoring
dynamics quenching a sufficiently weak symmetry-
breaking tilted ferromagnetic state [6]. As shown in
Fig. 3, there exists a critical value θc where on the
small-θ side the symmetry is not restored, leaving a
persistent symmetry-breaking behavior. It is worth noting
that the above discussions only apply to the finite-size
system as the critical value θc slowly varies with the system
size N with a scaling of θc ≈ 1.13π=

ffiffiffiffi
N

p
.

Quantum Mpemba effect in early-time dynamics—Now
we proceed to consider the EA dynamics for different initial
states with varying tilt angles θ. The numerical simulations
are performed using the TensorCircuit package [88]. We
observe that EA decays more rapidly as the tilt angle
increases for U(1)-symmetric random quantum circuits, as
illustrated in Fig. 4(a). Namely, a QME emerges in the
symmetry restoration process. It is important to highlight
that the presence of QME depends on the specific initial

FIG. 2. The average Rényi-2 EA E½ΔSð2ÞA � in the long-time limit
of random circuit evolution starting from the tilted ferromagnetic
initial states with tilt angle (a) θ ¼ 0.5π and (b) θ ¼ 0.05π versus
the subsystem size jAj. The increasing intensity of colors
represents increasing system sizes N ∈ f8; 12;…; 100g. The blue
and red lines represent the results for U(1)-symmetric random
circuits and random circuits without symmetry restriction, re-
spectively. The gray dashed lines represent the Rényi-2 EA for
the initial states with N ¼ 100.
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states and we observe the absence of QMEwith initial tilted
Néel states as shown in Fig. 5(b). Nevertheless, we
emphasize that the presence of QMEs is not a fine-tuned
phenomenon. We further investigate the EA dynamics and
observe QME with various sets of initial states, including
tilted ferromagnetic states where the tilt angle on each qubit
is randomly sampled from ½−W;W�, which is more
compatible with the experimental demonstration of
QMEs on quantum devices since it does not require high
precision state preparation [6].
On the contrary, for nonsymmetric random circuits, EA

dynamics with different initial states coincide as depicted in
Fig. 4(b). Consequently, although the EA still tends to zero
at late times, the QME disappears trivially. This behavior
can be understood in terms of the effective statistical model,
where the initial state dependence has been eliminated as
the inner product between different initial product states
and the first layer of random unitary gates is constant [6].
In addition, we have conducted investigations on setups

that incorporate additional symmetries, such as spatial or

temporal translational symmetry (random Floquet circuit)
[89–92]. We have found that thermalization accompanied
by symmetry restoration and the QME persists in these
setups as well [6]. Interestingly, the temporal translation
symmetry slows down the symmetry restoration, consistent
with the slow thermalization results in [91].
To understand the unified mechanism behind QME in

generic chaotic systems, we first consider the overlaps
between reduced density matrix ρA and different charge
sectors, defined as pq ¼ trðΠqρAΠqÞ. As shown in the inset
of Fig. 4(a), the charge distribution is more peaked to the
charge sector of a small dimension as the decreases of tilt
angle θ, i.e., the initial state is more symmetric.
Furthermore, the thermalization speeds for different charge
sectors are conjectured to be different where charge sectors
withOð1Þ dimension generally fail the ETH and thermalize
slowly. The conjecture of thermalization speed dependence
on the Hilbert subspace dimension is numerically validated
in the SM [6], which is of stand-alone importance toward a
better understanding of quantum thermalization. Therefore,
for tilted ferromagnetic states, weaker initial subsystem
symmetry breaking is linked with slower thermalization
speed via the larger overlap with small charge sectors.
Consequently, QME occurs as the symmetry restoration is
slower for more symmetric initial states.
This unified mechanism provides insights to identify the

suitable initial states exhibiting QME beyond the tilted
ferromagnetic state extensively investigated before. To
further validate the thermalization explanation of QME,
we investigate the EA dynamics of two different initial
states: one is the tilted ferromagnetic state with a middle
domain wall and the other is the tilted Néel state [6]. The
steady-state EA should be the same for these two initial
states as discussed in the SM [6]. However, QME is
captured by the early-time behaviors of EA dynamics,
making the local spin configurations of the initial states
crucial due to the casual cone structure. The numerical
results of overlaps between the two types of initial states
and different charge sectors are shown in Fig. 5. For the
tilted ferromagnetic state with a middle domain wall, the

FIG. 4. (a),(b) show the EA dynamics of subsystem A ¼
½0; N=4� for random quantum circuits with and without U(1)
symmetry respectively. We use N ¼ 16 in the former case and
N ¼ 8 in the latter case. The inset of (a) shows the overlaps of ρA
with different charge sectors ranging from f0;…; N=4g. QME
exists for U(1)-symmetric random circuits while it is absent in
random circuits without any symmetry.

FIG. 5. EA dynamics with initial (a) tilted ferromagnetic state
with a middle domain wall and (b) tilted Néel state. Insets show
the overlaps of ρA with different charge sectors q∈ f0;…; N=4g.
In the former case, the QME is present, whereas it is absent in the
latter case, although the late-time behaviors are the same for both
initial states based on the analytical results.

FIG. 3. (a) The average Rényi-2 EA E½ΔSð2ÞA � in the long-time
limit of U(1)-symmetric random circuit evolution at jAj ¼ N=4
versus tilt angle θ. The increasing intensity of colors corresponds
to N ∈ f8; 12;…; 100g. The inset depicts the peak position θmax
versus N. (b) The crossover for the symmetric restoration at
jAj < N=2. The red and blue areas represent the symmetry-
restored and persistent symmetry-breaking behaviors, respec-
tively. The “critical value” θc ≈ 2θmax for the finite size crossover
depends on N with a 1=

ffiffiffiffi
N

p
scaling.
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overlap distribution is similar to that of the tilted ferro-
magnetic state. Therefore, more symmetric states thermal-
ize slower and the QME occurs. On the contrary, for the
tilted Néel state, its charge distribution is always peaked to
the largest charge sector and thus it strongly obeys the ETH
regardless of tilt angles θ. Consequently, the thermalization
speed is essentially unchanged and the QME is absent.
Moreover, we also investigate the symmetry restoration

dynamics in quantum circuits with SU(2) and Z2 sym-
metries. We extend the definition of EA for SU(2)
symmetry and identify the presence (absence) of QME
in the SU(2) (Z2) symmetric circuits [6]. The unified
mechanism above also provides insights into these different
internal symmetry cases. For Z2 symmetry, there are only
two equally large Hilbert subspaces, and the thermalization
speeds of different initial states are expected to be similar
with no QME. In the SU(2)-symmetry case, the dimensions
of different symmetry sectors vary from constant to
exponential scaling like the U(1) case. Therefore, QME
can be observed for carefully designed initial states
satisfying the criteria above.
Conclusions and discussions—In this Letter, we have

presented a rigorous and comprehensive theoretical analy-
sis of subsystem symmetry restoration under the evolution
of random quantum circuits respecting the U(1) symmetry.
Our findings reveal that U(1)-symmetric circuits hinder the
U(1) symmetry restoration when the input is a tilted
ferromagnetic initial state with a small tilt angle θ.
Conversely, the symmetry can always be restored when
the tilt angle is large, i.e., the initial state is more U(1)-
asymmetric. These results highlight the distinctions
between U(1)-symmetric and nonsymmetric circuits in
terms of symmetry restoration and quantum thermalization.
More importantly, besides the late-time analytical

results, we have numerically investigated the early-time
dynamics of symmetry restoration and provided a unified
understanding of QME in generic chaotic systems in the
context of quantum thermalization. We have validated this
theoretical understanding via the correct predictions of the
presence and absence of QME for various initial states and
internal symmetries that have not been explored before.
There are various interesting questions worth further

investigation—for example, the comprehensive extension
of the symmetry restoration of other internal symmetries in
both integrable and chaotic systems. Additionally, the
investigation of symmetry restoration and the QME in
the many-body localized systems is lacking. Addressing
this gap will significantly enhance our theoretical compre-
hension of the mechanisms underlying the QME across
diverse systems [93].
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