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The presence of quantum noises inherent to real physical systems can strongly impact the physics in hybrid
quantum circuits with local random unitaries and midcircuit measurements. The quantum noises with a size-
independent occurring probability can lead to the disappearance of a measurement-induced entanglement phase
transition and the emergence of a single area-law phase. In this work, we investigate the effects of quantum
noises with size-dependent probabilities q = p/Lα , where α represents the scaling exponent. We have identified
a noise-induced entanglement phase transition from a volume law to a power (area) law in the presence (absence)
of measurements as p increases when α = 1. With the help of an effective statistical model, we reveal that the
phase transition is of first order arising from the competition between two types of spin configurations and shares
the same analytical understanding as the noise-induced coding transition. This unified picture further deepens
the understanding of the connection between entanglement behavior and the capacity of information protection.
When α �= 1, one spin configuration always dominates regardless of p and thus the phase transition disappears.
Moreover, we highlight the difference between the effects of size-dependent bulk noise and boundary noises. We
validate our analytical predictions with extensive numerical results from stabilizer circuit simulations.
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I. INTRODUCTION

Measurement-induced phase transitions (MIPTs) [1–3]
have recently attracted significant attention and have been
investigated in various setups [4–50]. These studies have re-
vealed that the entanglement within a system undergoes a
transition from a volume law to an area law as the mea-
surement probability increases. However, in real experimental
quantum systems, coupling to the environment unavoidably
introduces quantum noises. In terms of the effective statistical
model for random quantum circuits, the quantum noises can
be treated as symmetry-breaking fields that result in the dis-
appearance of the entanglement phase transition and a single
area-law entanglement phase regardless of the measurement
probability [51–58].

The MIPT from a power law phase to an area law phase
with fixed quantum noises at the spatial boundaries has been
investigated [59], which can be regarded as a special case of
quantum noises with size-dependent probabilities q = 2/L,
where L is the system size. Additionally, the effects of
quantum noises or T gates in the bulk with size-dependent
probabilities q = p/L have been explored in the context
of random circuit sampling [60–62] and non-stabilizerness
transition [63,64]. However, the investigation of the entangle-
ment phase transition in the MIPT setup with bulk quantum
noises of size-dependent probability is lacking. Moreover, the
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entanglement structures and critical behaviors associated with
quantum noises of size-dependent probabilities, as well as the
influence of different choices of scaling exponents α, are also
worth studying.

The entanglement structure and information protection ca-
pacity are closely related [7,8,65–68]. From the perspective
of information protection, a spatial boundary and a temporal
boundary noise-induced coding transition both occur [69,70].
Below a finite critical probability of boundary noise, the en-
coded information can be protected after a hybrid evolution
of time O(L). On the contrary, if the probability of boundary
noise exceeds this critical value, the information will be de-
stroyed by quantum noises. A similar noise-induced coding
transition is anticipated in the presence of bulk quantum noise
with probability q = p/L, but the differences in information
protection between boundary and bulk noises have not been
explored before. Furthermore, a comprehensive theoretical
understanding of the connections between noise-induced en-
tanglement and coding transitions is highly desired.

In this work, we investigate the entanglement phase tran-
sition in the presence of quantum noises with size-dependent
probability in a MIPT setup. We have identified a more gen-
eral entanglement phase diagram, as shown in Fig. 1(c), where
the x axis and y axis represent measurement probability pm

and noise probability prefactor p, respectively. Besides the
original MIPT occurring at pm = pc

m and p = 0, we identify
a noise-induced entanglement phase transition from a vol-
ume law phase to a power (area) law phase when 0 < pm <

pc
m ∼ 0.3 [52] (pm = 0), denoted by the black solid line in

Fig. 1(c). Via mapping to the classical spin model, the entan-
glement phase transition can be understood as the competition
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FIG. 1. Circuit setups with six qudits for (a) entanglement phase
transition and (b) coding transition. The red and green circles
represent the quantum channels and projective measurements, re-
spectively. In (b), a qudit is maximally entangled with a reference
qudit by creating a Bell pair |�+〉 to encode one qudit informa-
tion. (c) Phase diagram of the entanglement phase transition with
T = 4L. Red stars represent the critical points identified from nu-
merical results. The black solid (dashed) curve denotes the noise
(measurement)-induced phase transition.

between two types of spin configurations and the power law
entanglement is attributed to the Kardar-Parisi-Zhang (KPZ)
fluctuation [59,71–76] with an effective length scale Leff ∼
L/p [56,57].

Besides, we have also investigated the coding transition
in the presence of size-dependent quantum noises. The an-
alytical picture of the coding transition is distinct from that
presented in Ref. [69], where quantum noises are only applied
on one spatial boundary. Theoretically, we reveal that the
noise-induced entanglement phase transition and coding tran-
sition can be understood within the same framework, further
establishing the connection between entanglement structure
and information protection capacity. These two transitions
are both first-order transitions at the same critical point pc

and with the same critical exponent ν = 2 [69]. To validate
our theoretical findings, we have conducted stabilizer circuit
simulations, providing compelling evidence for the existence
and universal behavior of noise-induced entanglement phase
and coding transitions.

We remark that the choice of the scaling exponent
α for quantum noises is crucial for noise-induced phase
transitions. Previous studies focused on the disappearance
of the entanglement phase transition in the presence of bulk
quantum noises [51–57], corresponding to α = 0. In this
work, we demonstrate that noise-induced phase transitions
only occur at α = 1. In terms of the effective statistical
model, there is only one single dominant spin configuration

for α �= 1 with no competition between different
configurations.

The remainder of the paper is outlined as follows. In
Sec. II, we introduce the setups of noise-induced entangle-
ment phase transition and coding transition and the associated
observables. In Sec. III, we introduce the unified theoreti-
cal understanding of these two different noise-induced phase
transitions with the help of the effective statistical model.
In Sec. IV, we show the numerical results supporting the
theoretical understanding. In Sec. V, we discuss the distinc-
tions between bulk noises and boundary noises. Finally, the
conclusion and discussions follow in Sec. VI. The additional
numerical results are shown in the Appendixes.

II. SETUP AND OBSERVABLES

To investigate the noise-induced entanglement phase tran-
sition, we consider a one-dimensional system composed of
L d qudits with initial state |0〉⊗L, as illustrated in Fig. 1(a).
At each discrete time step, a layer of random two-qudit uni-
tary gates arranged in a brick-wall structure with periodic
boundary conditions (PBC) is applied. Then the projective
measurements and quantum noises act on each qudit with
probability pm and q = p/Lα , respectively. The hybrid evo-
lution time is T = 4L unless otherwise specified.

To quantify the entanglement for the final mixed state
[77,78], we employ the logarithmic entanglement negativity
[79–88] between the left (A) and right (B) half chain of the
final state

EN = log ||ρTB ||1, (1)

where ρTB is the partial transpose of ρ in subsystem B and
|| · ||1 denotes the trace norm. We also calculate the mutual
information

IA:B = SA + SB − SAB, (2)

where S is the von Neumann entropy. Mutual information
gives qualitatively similar scaling to EN and provides a more
intuitive understanding within the framework of the statistical
model.

The setup for the noise-induced coding transition is similar.
The main difference is that one qudit of the system is maxi-
mally entangled with a reference qudit to encode one qudit
of information at the initial state, as shown in Fig. 1(b). The
choice of the qudit is arbitrary due to PBC. To quantify the
information that remained in the system in the presence of
quantum noises, we measure the mutual information IAB:R =
SAB + SR − SAB∪R between the system and the reference qudit.
IAB:R = 2 (0) means that the encoded information is perfectly
protected (destroyed). To compare the entanglement phase
transition and the coding transition, we set their evolution
times T to be equal.

III. STATISTICAL MODEL

In this section, we present the theoretical understanding
of noise-induced phase transitions via the mapping between
the hybrid quantum circuit and the effective statistical model.
We focus on mutual information for simplicity. Please refer to
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FIG. 2. (a) Quantum circuit without quantum noise and projective measurement. The random two-qudit unitary gates (blue rectangles) are
arranged in a brick-wall structure. (b) The statistical model with the degrees of freedom formed by the permutation-valued spins σ and τ . For
the statistical model corresponding to SAB, the top boundary is fixed by adding an additional layer of spins C. (c) We integrate out spins τ to
obtain the positive three-body weights of the downward triangles. The total weight is the product of the weights of downward triangles. (d) The
three-body weight of a downward triangle.

Refs. [56,57] for more details of the effective statistical model
and the analysis of EN .

A. Mapping between the quantum circuit
and the statistical model

The (1 + 1)D quantum circuit can be mapped to a 2D
classical spin model after averaging independent two-qudit
random Haar gates. For simplicity, we begin with the most
basic setup without any quantum noise or projective measure-
ment and defer the discussions of cases with quantum noises
or projective measurements to the subsequent sections.

The quantum circuit at a given trajectory consists of ran-
dom two-qudit unitary gates arranged in a brick-wall structure
as shown in Fig. 2(a). The density matrix ρ after evolution
time T is

ρ(T ) =
(

T∏
t=1

Ũt

)
ρ0

(
T∏

t=1

Ũt

)†

, (3)

where ρ0 represents the density matrix of the initial state and
Ũt is the unitary evolution of discrete time step t which is
given by

Ũt =
L−2

2∏
i=0

Ut,(2i+2,2i+3)

L−2
2∏

i=0

Ut,(2i+1,2i+2), (4)

where each two-qudit unitary gate is independently and ran-
domly drawn from the Haar measure. We choose PBC and
thus L + i ≡ i. To obtain analytical results, we first express
|ρ(T )〉 in an r-fold replicated Hilbert space

|ρ(T )〉⊗r =
T∏

t=1

[Ũt ⊗ Ũ ∗
t ]⊗r |ρ0〉⊗r

=
T∏

t=1

( L−2
2∏

i=0

(Ut,(2i+2,2i+3) ⊗ U ∗
t,(2i+2,2i+3))

⊗r

×
L−2

2∏
i=0

(Ut,(2i+1,2i+2) ⊗ U ∗
t,(2i+1,2i+2))

⊗r

)
|ρ0〉⊗r .

(5)

Each random two-qudit unitary gate Ut,(i, j) can be averaged
independently [11,14,22,59,66,89–92]:

EU (Ut,(i, j) ⊗ U ∗
t,(i, j) )

⊗r =
∑

σ,τ∈Sr

Wg(r)
d2 (στ−1)|ττ 〉〈σσ |i j,

(6)

where d is the local Hilbert space dimension of qudit
and σ, τ are permutation spins in the permutation group
Sr of dimension r. We showcase the exact expressions of
permutation spins when r = 2 (two-copy). There are two
types of spins: one is the identity permutation spin I =∑d−1

i, j=0 |ik,1ib,1 jk,2 jb,2〉, where i ( j) represents the computa-
tional basis of a qudit and the index k (b) represents ket (bra)
for the first or second copy; the other is the swap permuta-
tion spin C = ∑d−1

i, j=0 |ik,1 jb,1 jk,2ib,2〉. Wg(r)
d2 is the Weingarten

function with an asymptotic expansion for large d [89,91]:

Wg(r)
d2 (σ ) = 1

d2r

[
Moeb(σ )

d2|σ | + O(d−2|σ |−4)

]
, (7)

where |σ | is the number of transpositions required to construct
σ from the identity permutation spin I.

Via regarding the permutation spins as the degrees of free-
dom, we can transform the quantum circuit into a classical
statistical model. The partition function Z of this effective sta-
tistical model is the summation of the total weights of various
spin configurations, where the total weight of a specific spin
configuration is the product of the weights of the diagonal
and vertical bonds as shown in Fig. 2(b). The weight of the
diagonal bond is given by the inner product between two
diagonally adjacent permutation spins

wd (σ, τ ) = 〈σ |τ 〉 = dr−|σ−1τ | (8)

and the weight of the vertical bond is given by the Weingarten
function. Due to that Moeb(σ ) (Moebius number of σ ) can be
negative [91], we need to integrate out the τ spins to obtain
positive three-body weights of downward triangles as shown
in Fig. 2(d):

W 0(σ1, σ2; σ3) =
∑
τ∈Sr

Wg(r)
d2 (σ3τ

−1)d2r−|σ−1
1 τ |−|σ−1

2 τ |. (9)

Therefore, the total weight of a specific spin configuration
is the product of the weights of the downward triangles as
illustrated in Fig. 2(c).

In the following discussion, we focus on the limit of large
local Hilbert space dimension, d → ∞, i.e., the partition
function Z is determined by the weight of the dominant spin
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configuration, which makes the analytical analysis easy and
provides consistent theoretical understanding with numerical
results with finite d numerically validated below.

Before the discussion of the relation between the von Neu-
mann entropy and free energy, we show the weights of the
downward triangles with two specific spin configurations as
follows.

(i) σ1 = σ2 = σ3 = σ :

W 0(σ, σ ; σ ) =
∑
τ∈Sr

Wg(r)
d2 (στ−1)d2r−2|σ−1τ |

≈
∑
τ∈Sr

Moeb(στ−1)d−4|σ−1τ |

≈ d0. (10)

(ii) σ1 = σ ′, σ2 = σ3 = σ or σ2 = σ ′, σ1 = σ3 = σ :

W 0(σ ′, σ ; σ ) = W 0(σ, σ ′; σ )

=
∑
τ∈Sr

Wg(r)
d2 (στ−1)d2r−|σ−1τ |−|(σ ′ )−1τ |

≈
∑
τ∈Sr

Moeb(στ−1)d−3|σ−1τ |−|(σ ′ )−1τ |

≈ d−|(σ ′ )−1 )σ |. (11)

While there are other possible spin configurations, the con-
figuration that maximizes the triangle weight occurs when
σ1 = σ2 = σ3 = σ . Therefore, the spin-spin interaction of the
effective statistical model is ferromagnetic and thus all the
spins tend to be in the same direction to achieve the largest to-
tal weight. However, as discussed below, due to the particular
top boundary conditions and the presence of quantum noises,
the Sr rotational symmetry is broken [51–55] and domain
walls may appear with unit energy of log[W 0(σ ′, σ ; σ )] in the
dominant spin configuration.

B. Relation between the von Neumann entropy
and the free energy

Having established the mapping between the quantum cir-
cuit and the effective statistical model, we then introduce how
to obtain the von Neumann entropy and mutual information of
the circuit model from the free energy of the statistical model.

We first rewrite the von Neumann entropy Sβ of the sub-
system β (β̄ represents the complementary region to β) as

Sβ = lim
n→1

S(n)
β = lim

n→1

1

1 − n
EU log

trρn
β

(trρ)n
, (12)

where ρβ is the reduced density matrix of subsystem β and
S(n)

β is the nth order Renyi entropy. In n-fold replicated Hilbert
space,

S(n)
β = 1

1 − n
EU log

trρn
β

(trρ)n
(13)

= 1

1 − n
EU log

Tr[(Cβ ⊗ Iβ̄ )ρ⊗n]

Tr[(Iβ ⊗ Iβ̄ )ρ⊗n]

= 1

1 − n
EU log

Z (n)
β

Z (n)
0

,

where Cβ and Iβ are the cyclic and the identity permutations
among the n ket indices of subsystem β, respectively, i.e.,

Cβ = ⊗i∈βCi, (14)

Iβ = ⊗i∈β Ii,

where Ci =
(

1 2 . . . n
2 3 . . . 1

)
i

and Ii =
(

1 2 . . . n
1 2 . . . n

)
i

are the

cyclic and identity permutations among the n ket indices of
site i. Via the replica trick [93,94], we can overcome the
difficulty of the average outside the logarithmic function

EU log Z (n)
β = lim

k→0

1

k
log

{
EU

(
Z (n)

β

)k}
= lim

k→0

1

k
log Z (n,k)

β ,

EU log Z (n)
0 = lim

k→0

1

k
log

{
EU

(
Z (n)

0

)k}
= lim

k→0

1

k
log Z (n,k)

0 , (15)

where

Z (n,k)
β = Tr{(Cβ ⊗ Iβ̄ )⊗k (EUρ⊗nk )}

= Tr{Cβ ⊗ Iβ̄ (EUρ⊗nk )},
Z (n,k)

0 = Tr{(Iβ ⊗ Iβ̄ )⊗k (EUρ⊗nk )}
= Tr{Iβ ⊗ Iβ̄ (EUρ⊗nk )}, (16)

with C = C⊗k and I = I⊗k being permutations in the r-fold
replicated Hilbert space with r = nk. Therefore,

Sβ = lim
k→0
n→1

1

k(1 − n)
log

{
Z (n,k)

β

Z (n,k)
0

}
, (17)

where Z is the partition function of the classical spin model,
corresponding to the weight of the dominant spin configura-
tion with the largest weight of the ferromagnetic spin model
in the large d limit. Therefore, Sβ can be represented as the
free energy difference:

S(n,k)
β = 1

k(n − 1)

[
F (n,k)

β − F (n,k)
0

]
. (18)

We note that the free energy F (n,k) is proportional to the
length of the domain wall with unit energy k(n − 1) and thus

1
k(n−1) F

(n,k) is independent of the index (n, k). Consequently,
the limit to extract von Neumann entropy shown in Eq. (17)
can be safely taken. Moreover, as illustrated in Eq. (16), the
top boundary conditions are fixed to Cβ ⊗ Iβ̄ for Zβ and
Iβ ⊗ Iβ̄ for Z0 and the bottom boundary condition is free
with the initial product state. As a result, the dominant spin
configuration contributing to F (n,k)

0 is always that all the spins
are fixed to I and F (n,k)

0 is zero. Therefore, Sβ is determined
by the free energy F (n,k)

β .
In the absence of quantum noises, the dominant spin con-

figuration contributing to F (n,k)
AB is that all the spins are fixed

to C and the free energy F (n,k)
AB is zero. Therefore, SAB is zero

consistent with the fact of a pure state.
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(a) (b)

(c) (d)

FIG. 3. Spin configurations of the effective statistical model: red
for C and blue for I. (a), (b) The two competing spin configurations
for SAB in the entanglement phase transition. The effective length
scale of the domain wall shown in (b) is determined by the average
distance between adjacent quantum noises. In the presence of pro-
jective measurements, the domain wall will fluctuate away from its
original path. (c), (d) The two competing spin configurations in the
coding transition. The spin corresponding to the Bell pair is denoted
as R and is fixed to I and C for SAB and SAB∪R, respectively. N
represents the topmost quantum noise and other quantum noises in
the bulk are not shown here.

C. Noise-induced entanglement phase transitions

In this section, we introduce the effects of quantum noises
and the theoretical understanding of noise-induced entan-
glement phase transitions. We showcase by using the reset
channel R to model quantum noise and the conclusion does
not depend on the choice of the quantum channel.

In terms of the effective statistical model, the presence
of a reset channel changes the weight of the diagonal bond
between two diagonally adjacent spins,

〈σ |R|τ 〉 = dr−|τ |, (19)

and thereby affects the weight of the downward triangle. The
weight of the triangle with the same three spins is

W R(σ, σ ; σ ) =
∑
τ∈Sr

Wg(r)
d2 (σ−1τ )dr−|σ−1τ |〈σ |R|τ 〉

=
∑
τ∈Sr

Wg(r)
d2 (σ−1τ )dr−|σ−1τ |dr−|τ |

∼ d−|σ |. (20)

Consequently, in the classical spin model, the quantum noise
acts as a magnetic field pinning in the direction I and the
random space-time locations of quantum noises can be treated
as quenched disorders.

For the classical spin model corresponding to SAB, the dom-
inant spin configuration for α > 1 is that all spins are fixed
to C as shown in Fig. 3(a), same as the noiseless case, and
the free energy is proportional to qLT , the average number
of quantum noises, due to the energy cost arising from the
magnetic field. However, when α < 1, this configuration is
not favored compared to the spin configuration with a domain
wall as shown in Fig. 3(b), whose free energy is proportional
to the domain wall length as s0L, where s0 is a constant. The

domain wall is formed as follows [57]. Due to the fixed top
boundary condition of the classical spin model corresponding
to SAB, the classical spins remain C until the reversed evolu-
tion from the top to the bottom encounters a quantum noise
N (x1, t1). Spins inside the downward light cone of N (x1, t1)
will change from C to I while other spins are unchanged.
Other quantum noises inside the light cone of N (x1, t1) do
not affect the spin configuration as these spins are already
in the I domain, while another quantum noise outside the
light cone, e.g., N (x2, t2), will also change the spins within
its respective backward light cone from C to I. As a result,
the domain wall is composed of the downward light cone of
topmost noises, i.e., the inflection points of the domain wall
correspond to the locations of topmost noises as shown in
Fig. 3(b) and other noises remain in domain I with no extra
energy contribution. Moreover, there is an effective length
scale Leff ∼ q−1 determined by the average distance between
adjacent quantum noises, as shown in Fig. 3(b).

Besides, the spin configuration with a domain wall is al-
ways favored for the classical spin model corresponding to
SA(B) due to the fixed top boundary conditions. Consequently,
when α = 1, a competition between the two types of spin
configurations of SAB arises resulting in a volume law entan-
glement phase with the mutual information proportional to
(s0 − pT

L )L when p < s0L/T and an area law entanglement
phase when p > s0L/T , corresponding to the vertical line at
pm = 0 shown in Fig. 1(c).

The projective measurements will not alter the mechanism
of noise-induced entanglement phase transition, as given by
the competition between two candidate spin configurations
of SAB. However, the projective measurements, regarded as
attractive random Gaussian potential in the effective statis-
tical model, can render the domain wall fluctuating to go
through more measurements to minimize the free energy.
Consequently, building on our previous works [56,57], the
free energy of the domain wall can be obtained from the
KPZ theory including a subleading term proportional to L1/3

eff .
Therefore, when the noise probability p > pc, the entangle-
ment obeys a power law scaling in the presence of projective
measurements, as shown in the blue region in Fig. 1(c).

Notably, this entanglement phase transition is a first-order
phase transition arising from the competition between two
spin configurations. For α > 1 (α < 1) the spin configuration
with all spins fixed to C (with domain wall) always dominates,
leading to a single volume law (power-law or area-law) entan-
glement phase. Therefore, this noise-induced phase transition
only occurs with α = 1.

D. Noise-induced coding transition

Next, we apply the statistical model understanding to the
noise-induced coding transition. In addition to the particular
top boundary conditions discussed above, the spin at the bot-
tom with the Bell pair is fixed by the top boundary conditions
of the reference qubit: I, C, and C for SAB, SR, and SAB∪R,
respectively; see Figs. 3(c) and 3(d). SR remains constant
because the dominant spin configuration is I in the bulk,
regardless of the noise probability. The defect created at the
bottom due to the Bell pair contributes to the free energy 1.
However, for SAB and SAB∪R, the competition between the spin
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FIG. 4. Here, q = p/L, pm = 0.2, and T = 4L. (a) The rescaled
mutual information IA:B/L1/3 vs noise probability prefactor p; (b) the
rescaled logarithmic entanglement negativity EN/L1/3 vs noise prob-
ability prefactor p. There is a noise-induced entanglement phase
transition from a volume law phase to a power law phase with an
increase of p. The insets show the data collapse with pc = 0.0593
and ν = 2. (c), (d) The fitting of the mutual information. The ob-
tained power is very close to the theoretical predictions, showing that
IA:B ∼ (L/p)1/3.

configuration with all spins fixed to C and the spin configura-
tion with a topmost domain wall, as shown in Figs. 3(c) and
3(d), still exists. The mutual information IAB∪R = 2 when the
former spin configuration dominates, while IAB∪R = 0 when
the latter dominates. As a result, the encoded information is
perfectly protected with the noise probability prefactor below
the critical value and a noise-induced coding transition occurs
as the noise probability prefactor p increases. Via the under-
standing of the unified statistical model, the coding transition
is demonstrated to share the same critical value and exponent
as the entanglement phase transition.

We note that the coding transition induced by bulk noises
differs significantly from the spatial boundary noises case
where the information is only partially protected below the
critical value [69]. In Sec. V, we present a detailed discussion
of the distinction in the coding transition between bulk noises
and boundary noises.

IV. NUMERICAL RESULTS

To support our theoretical understanding, we conduct ex-
tensive simulations of large-scale stabilizer circuits where
random Clifford two-qubit unitary gates form a unitary
3-design [95,96] and thus give qualitatively similar entan-
glement behaviors as the Haar random gates. To model the
quantum noise, we employed the reset channel defined as
follows:

Ri(ρ) = tri(ρ) ⊗ |0〉〈0|i. (21)

We note that the conclusions are independent of the choice of
the quantum channels [57].

We set α = 1 and pm < pc
m. The numerical results of EN

and IA:B with pm = 0.2 and varying noise probabilities are
shown in Figs. 4(a) and 4(b). The y axis represents the rescaled

FIG. 5. (a) Noise-induced coding transition in the presence of
quantum noises with α = 1. pm = 0.2 and T = 4L. The inset shows
the data collapse with critical probability pc = 0.0543(73) and crit-
ical exponent ν = 2.052(556) which are consistent with those of
noise-induced entanglement phase transition. (b), (c) The mutual
information IAB:R with α = 0.8 and α = 1.2, respectively. The noise-
induced phase transitions disappear when α �= 1.

entanglement, denoted as EN/L1/3 or IA:B/L1/3. In the power-
law entanglement phase with large noise probabilities, the
data obtained from different system sizes should collapse
onto the same curve. Conversely, in the volume entangle-
ment phase, the rescaled entanglement should increase as the
system size increases. We observe a crossing point at a criti-
cal probability, pc, indicating the noise-induced entanglement
phase transition. To determine this critical probability, we
employ data collapse with a scaling function

S(p, L)/L1/3 = F ((p − pc)L1/ν ), (22)

where S represents EN or IA:B and ν is the critical exponent
fixed to 2 arising from the randomness of quantum noises [69].
The data collapse is shown in the insets of Fig. 4. Similarly,
we show IA:B ∼ (L/p)1/3 scaling as illustrated in Figs. 4(c)
and 4(d). Therefore, we have demonstrated the noise-induced
entanglement phase transition from a volume-law phase to a
power-law phase. In the absence of projective measurements,
there is an area-law entanglement phase instead of a power-
law entanglement phase when the noise probability p > pc;
see more numerical results of the noise-induced entanglement
phase transition in Appendix A.

Next, we numerically investigate the noise-induced cod-
ing transition. The numerical results of IAB:R are shown in
Fig. 5(a). When the quantum noises are sparse with a small
probability, the encoded quantum information can be per-
fectly protected in the thermodynamic limit, i.e., IAB:R = 2,
consistent with the theoretical prediction. When p is large, the
information is destroyed and IAB:R = 0. The inset of Fig. 5(a)
shows the data collapse, where the obtained critical proba-
bility and exponent are consistent with those obtained from
the noise-induced entanglement phase transition. See more
numerical results of the noise-induced coding transition in
Appendix B.

Apart from the initial state encoding scheme, we also
investigate the information protection from the steady-state
encoding scheme. In this case, the information protection time
scale is predicted to be (L/p)1/2 [57], which is consistent with
our numerical results as shown in Appendix A.
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FIG. 6. (a), (d) Spin configurations with all spins fixed to C with
T/L < 1 and T/L > 1, respectively. The quantum noises are at the
left spatial boundary (dashed rectangle). (b), (e) The spin configura-
tions with a domain wall. In (b), the black line shows another possible
path for the domain wall with the same t0. (c), (f) The domain wall
configuration with quantum noises in the bulk without and with the
scrambling process, respectively.

Furthermore, as discussed above, the scaling exponent
α = 1 is crucial for these noise-induced phase transitions.
Here, we show the numerical results of mutual information
IAB:R with α = 0.8 and α = 1.2 in Figs. 5(b) and 5(c), re-
spectively. The encoded information will always be destroyed
(perfectly protected) in the presence of quantum noises when
α < 1 (α > 1) in the thermodynamic limit.

V. DISTINCTION BETWEEN BULK NOISES
AND BOUNDARY NOISES

In this section, we clarify the differences between the
setup investigated in this work with bulk quantum noises
and the setup investigated in Ref. [69] with spatial bound-
ary quantum noises. The different space-time distributions
of quantum noises result in qualitative differences in in-
formation protection and phase diagram of the coding
transition.

For the setup with quantum noises on the left spatial bound-
ary [69], the location of encoded information is crucial and is
set to nearest to the left boundary. We note that the information
dynamics is agnostic with the location of encoded information
for the bulk noises case even with open boundary conditions.
First, we analyze the competition between different candidate
spin configurations in the large d limit to provide analytical
predictions of the coding transition with quantum noises on
the left boundary. Since SR remains constant, we only consider
the classical spin models corresponding to SAB and SAB∪R. One
candidate spin configuration is that all spins are fixed to C [see
Figs. 6(a) and 6(d)] resulting in a free energy (on average)
of (qT + 1)|C| and qT |C| for SAB and SAB∪R, respectively.
Consequently, the mutual information between the system
and the reference qudit is IAB:R = 2 log(d ), indicating that
the encoded information is perfectly protected. On the other
hand, when T/L < 1, another candidate spin configuration is
to create a domain wall that starts from the left boundary at
time t0 and is annihilated at the bottom such that the Bell pair
lives in the domain I [see Fig. 6(b)], while, when T/L > 1,
another candidate spin configuration is to create a domain
wall that starts from the left-top corner and is annihilated by

the right boundary [see Fig. 6(e)]. The mutual information in
both cases is zero, i.e., the encoded information is destroyed
by the quantum noises. However, the free energy of the former
spin configuration [Fig. 6(b)] is [qt0 + (T − t0)]|C|, which is
larger than that with all spins fixed to C regardless of the
choice of t0. Consequently, the boundary noise induced coding
transition is absent when T/L < 1 in the large d limit. On
the contrary, the free energy of the latter spin configuration
[Fig. 6(e)] is L|C| and thus the boundary noise induced coding
transition from an information perfectly protected phase to an
information lost phase occurs in the large d limit as boundary
noise probability increases.

However, as investigated in Ref. [69], the case with finite
d differs significantly from the theoretical predictions in the
large d limit. The boundary noise induced coding transition
always exists regardless of the choice of T/L, although it is
a first-order transition when T/L > 1, while it is a second-
order transition when T/L < 1. Moreover, the information
is partially protected with noise probability below the criti-
cal point, different from the theoretical prediction of perfect
protection in the large d limit. To understand this difference
between large d and finite d , we note that the path of the
domain wall with fixed t0 is not unique [see Fig. 6(b)] and
thus there is an entropy contribution to the free energy at finite
temperature, i.e., finite d , which is crucial for the boundary
noise induced coding transition with finite d . Moreover, as
discussed in Ref. [69], the introduction of a prescrambling
process before the noisy evolution will cause the disappear-
ance of the second-order transition and the information will
be perfectly protected when the noise probability is below the

(a)

(b)

0 1

0 1

(c)

0 1 2 3

(d)

0 1 2 3

partially
protected perfectly

protected

perfectly
protected

perfectly
protected

FIG. 7. Schematic phase diagrams for coding transition with-
out prescrambling process. (a) Left-boundary noises and d = ∞;
(b) left-boundary noises and d = 2 [69]. (c) Bulk noises and d = ∞;
(d) bulk noises and d = 2. In the presence of bulk quantum noises,
the schematic phase diagrams are the same for d = 2 and d = ∞.
The red line represents a first-order transition, while the blue line
represents a second-order phase transition.
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critical point, although it will not change the analysis above in
the large d limit.

For the setup considered in this work, when the scaling
exponent of quantum noise is α = 1, i.e., q = p/L, the free
energy (on average) of the spin configuration with all spins
fixed to C is (pT + 1)|C| and pT |C| for SAB and SAB∪R, re-
spectively. However, the free energy of the spin configuration
with a domain wall is always O(L|C|) regardless of the choice
of T/L. Consequently, the noise-induced coding transition
always exists in the large d limit. Furthermore, the dominant
domain wall configuration in our case is horizontal-like, con-
trasting to the vertical-like domain wall in the boundary noises
case. Therefore, the domain wall in the bulk noises case is
unique because of the unitary constraint and the analytical
results from the large d limit match well with the numerical re-
sults from finite d = 2, including the consistent critical point
and perfect information protection. Consequently, for the case
with the bulk quantum noises investigated in this work, the
results remain qualitatively the same with and without the pre-
scrambling stage. See more numerical results in Appendix B.

In conclusion, the schematic phase diagrams with infinite
d and finite d for these two setups are shown in Fig. 7.

VI. CONCLUSIONS AND DISCUSSION

We have investigated the noise-induced entanglement
phase transition and coding transition in the presence of
quantum noises with scaling exponent α = 1. Theoretical
analysis reveals that these phase transitions can be understood
as the first-order phase transition by the competition between
different spin configurations within an effective statistical
model. Through numerical simulations, we have validated
these noise-induced phase transitions and their critical behav-
iors, generalizing the framework of MIPTs to the cases with
quantum noises as shown in Fig. 1. Additionally, the influence
of the scaling exponents α has also been discussed. We have
also investigated the disappearance of phase transition when
α �= 1 as only one spin configuration dominates regardless
of p.

The power law scaling with different exponents in open
quantum systems can lead to drastic changes of dynamical
phases and phase transitions. In this article, we observe that
different power law scalings for noise strength lead to volume
law and area law phases, separated by the α = 1 regime with
an entanglement phase transition. Similarly, different power
law scalings for noise spectrum result in sub-Ohmic and
super-Ohmic regimes, separated by the Ohmic regime with
a delocalized-localized transition [97,98]. It is an interesting
future direction to investigate the distinction and connection
between general dissipation dynamics phenomena and the
noise-induced transitions reported here.

Furthermore, we note that the noise-induced entanglement
or coding transitions have a slightly different statistical model
picture compared to the noise-induced computational com-
plexity transition in random circuit sampling [60–62]. In the
latter case, there are only two replicas and the critical prob-
ability pc is independent of the choice of the ratio L/T as
analytically predicted as pc ≈ 1. However, for noise-induced
entanglement or coding transitions discussed in this article,
pc ∼ L/T . For the infinite time limit L/T → 0, these noise-

induced phase transitions vanish, consistent with the fact that
the encoded information is ultimately destroyed in the pres-
ence of quantum noises. To demonstrate these differences,
we have conducted simulations on noise-induced computa-
tional complexity transition in Clifford circuits as shown in
Appendix D.
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APPENDIX A: NUMERICAL RESULTS FOR
NOISE-INDUCED ENTANGLEMENT PHASE TRANSITION

In this section, we present additional numerical results
of the noise-induced entanglement phase transition. The nu-
merical results for the mutual information and logarithmic
entanglement negativity with fixed measurement probability
pm = 0.1 and T/L = 4 are shown in Fig. 8. In the absence
of projective measurement, i.e., pm = 0.0, the noise-induced
entanglement phase transition still occurs. However, when the
probability of noise p exceeds the critical value pc, the entan-
glement within the system follows an area law, as illustrated
in Figs. 9 and 11(a).

Moreover, to validate our analytical understanding, we also
investigate the timescale of information protection for the
steady states in this noise-induced power or area law entan-
glement phase. As discussed in our previous work [57], this
timescale is q−1/2, i.e., (L/p)1/2 when p is much larger than pc

and can be understood as the analogy of the Hayden-Preskill
protocol for black holes [99] in noisy hybrid quantum circuits.
Consequently, the dynamics of mutual information IAB:R can
be collapsed with rescaled time t/(L/p)1/2. The numerical

FIG. 8. Probability of reset channels is q = p/L and the proba-
bility of measurements is pm = 0.1. We set T = 4L. (a) The rescaled
mutual information within the system IA:B/L1/3 vs noise probability
p; (b) the rescaled logarithmic entanglement negativity within the
system EN/L1/3 vs noise probability p. The insets show the data
collapse with pc = 0.123 and ν = 2.

064323-8



NOISE-INDUCED PHASE TRANSITIONS IN HYBRID … PHYSICAL REVIEW B 110, 064323 (2024)

FIG. 9. Probability of reset channels is q = p/L and the proba-
bility of measurements is pm = 0.0. We set T = 4L. (a) The rescaled
mutual information within the system IA:B/L1/3 vs noise probability
p; (b) the rescaled logarithmic entanglement negativity within the
system EN/L1/3 vs noise probability p. The insets show the data
collapse with pc = 0.252 and ν = 2.

results with pm = 0.2 and pm = 0.0 are shown in Figs. 10 and
11(b), respectively.

APPENDIX B: NUMERICAL RESULTS FOR
NOISE-INDUCED CODING TRANSITION

In this section, we present additional numerical results of
the noise-induced coding transition. The numerical results of
mutual information IAB:R between the system (AB) and the
reference qubit R with measurement probabilities pm = 0.1
and pm = 0.0 are shown in Figs. 12 and 13, respectively. The
critical exponent ν is close to 2 and the critical probability pc

increases as the probability of measurements decreases.
As discussed in the main text and shown in Fig. 14, the

critical probability of noises will decrease as the ratio L/T de-
creases. Besides the phase diagram with T/L = 4 in the main
text, we also show a schematic phase diagram with varying
ratio L/T in Fig. 15. In the limit L/T → 0, the noise-induced
coding phase transition, as well as the noise-induced entangle-
ment phase transition, disappear. From the perspective of the
coding transition, it is consistent with the fact that the encoded
information is ultimately destroyed by the quantum noises.

FIG. 10. Probability of reset channels is q = p/L and the prob-
ability of measurements is pm = 0.2. The dynamics of mutual
information IAB:R can be collapsed with rescaled time t/(L/p)1/2.

FIG. 11. Probability of reset channels is q = p/L and the proba-
bility of measurements is pm = 0.0. (a) The mutual information IA:B

of the steady states vs system size L with the probability of noise
p > pc. The entanglement within the system obeys area law. (b) The
dynamics of mutual information IAB:R vs rescaled time t/(L/p)1/2.

FIG. 12. Probability of reset channels is q = p/L and the prob-
ability of measurements is pm = 0.1. We set Tscr = T and T =
4L. Inset shows the data collapse with pc = 0.115(6) and ν =
2.241(487).

FIG. 13. Probability of reset channels is q = p/L and the prob-
ability of measurements is pm = 0.0. We set Tscr = T and T =
4L. Inset shows the data collapse with pc = 0.251(2) and ν =
2.280(356).
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FIG. 14. Probability of reset channels is q = p/L and the prob-
ability of measurements is pm = 0. Tscr = 0 in the left panel and
Tscr = L in the right panel. (a), (b), (c), (d), and (e), (f) show the
mutual information IAB:R with T/L = 1/4, 1/2, and 1, respectively.
Insets show the data collapse with pc = L/T and ν = 2.

APPENDIX C: NUMERICAL RESULTS FOR MIPT
IN THE PRESENCE OF QUANTUM NOISES

In the section, we show more numerical results of
measurement-induced entanglement phase transition in the
presence of quantum noises with scaling exponent α = 1. As
shown in Fig. 16, there is a measurement-induced entangle-
ment phase transition from power law to area law with the
increases of measurement probabilities. The critical probabil-
ity of measurements pc

m and critical exponent νm are consistent
with those in MIPTs without quantum noises. We note that,

FIG. 15. Schematic phase diagram: pc decreases with the ratio
L/T decreases.

FIG. 16. Probability of reset channels is q = 0.252/L and T =
4L. (a) IA:B vs pm. Inset shows the data collapse with pm = 0.3 and
νm = 1.3. (b) IA:B vs L1/3. As the measurement probability increases,
there is an entanglement phase transition from power law to area law.

FIG. 17. Probability of quantum noises is q = p/L. The ratio of
the averaged fidelity and the averaged XEB vs noise probability p.
There is a noise-induced complexity transition. The inset shows the
data collapse with pc ≈ 0.96 and ν ≈ 1.

FIG. 18. Similar to cases of noise-induced entanglement and
coding transitions, the complexity transition only exists with α = 1.
(a), (b) The ratio of the fidelity and XEB vs noise probability p with
scaling exponents α = 0.5 and α = 1.5.
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in the presence of quantum noises at spatial boundaries, the
critical probability is also the same as that without quantum
noises but the critical exponent changes, which may be caused
by the limited system sizes [59].

APPENDIX D: NUMERICAL RESULTS FOR
NOISE-INDUCED COMPLEXITY TRANSITION

IN RANDOM CIRCUIT SAMPLING

In addition to the noise-induced entanglement and coding
transitions, there is also a noise-induced computational com-
plexity transition in random circuit sampling [60–62]. When
the quantum noise is strong, the wave function of the system
can be approximately represented by multiple uncorrelated
subsystems. This makes the quantum system vulnerable to

spoofing by classical algorithms that only represent a part
of the system. However, when the quantum noise is suffi-
ciently weak, correlations span the entire system restoring
its computational complexity. We demonstrate this transition
numerically by the crossing of the ratio of the fidelity and the
linear cross-entropy benchmarking (XEB), which is defined as

XEB = 2L
∑

s

p(s)q(s) − 1, (D1)

where p(s) and q(s) are the distribution probabilities of
bitstring s of the final state of a given trajectory without
and with quantum noises, respectively. The noise-induced
computational complexity transition is illustrated in
Fig. 17 with noise probability q = p/L. When α �= 1, this
complexity transition also disappears; see Fig. 18 for more
details.
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