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In the context of measurement-induced entanglement phase transitions, the influence of quantum noises,
which are inherent in real physical systems, is of great importance and experimental relevance. In this
Letter, we present a comprehensive theoretical analysis of the effects of both temporally uncorrelated and
correlated quantum noises on entanglement generation and information protection. This investigation
reveals that entanglement within the system follows q−1=3 scaling for both types of quantum noises, where
q represents the noise probability. The scaling arises from the Kardar-Parisi-Zhang fluctuation with
effective length scale Leff ∼ q−1. More importantly, the information protection timescales of the steady
states are explored and shown to follow q−1=2 and q−2=3 scaling for temporally uncorrelated and correlated
noises, respectively. The former scaling can be interpreted as a Hayden-Preskill protocol, while the latter is
a direct consequence of Kardar-Parisi-Zhang fluctuations. We conduct extensive numerical simulations
using stabilizer formalism to support the theoretical understanding. This Letter not only contributes to a
deeper understanding of the interplay between quantum noises and measurement-induced phase transition
but also provides a new perspective to understand the effects of Markovian and non-Markovian noises on
quantum computation.
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Introduction.—The competition between unitary evolu-
tion and nonunitary monitored measurements gives rise to a
dynamical phase transition known as the measurement-
induced phase transition (MIPT) [1–21]. The entanglement
within the system undergoes a transition from a volume-
law phase to an area-law phase as the measurement
probability increases. Theoretical understanding of MIPT
[11,14] reveals its connection to the order-disorder tran-
sition of a classical spin model through the mapping
between the hybrid quantum circuit and an effective
statistical model. Building upon this theoretical under-
standing, MIPT has been extensively investigated in
various systems [22–52].
The entanglement structure and information protection

are intricately connected [7,8,53–56]. For a noiseless
monitored random circuit in a volume law phase (also
dubbed as error-resilient phase), the encoded information
will remain in the system for an infinitely long time.
However, in real experiments, inevitable quantum noise
from the environment can disrupt entanglement within the
system. [16]. From the entanglement perspective, it has
been demonstrated that quantum noise can be treated as a
symmetry-breaking field in the effective statistical model,
resulting in a single area-law entanglement phase and
the disappearance of MIPTwith infinitesimal noise strength
q [57–62]. Nevertheless, investigations on the information
protection capacity in noisy hybrid quantum circuits are
rare and strongly required, especially necessitating the

identification of a characteristic timescale for information
protection, because noise errors are more general and
common than measurement errors on quantum devices
for quantum error correction.
While temporally correlated measurements in MIPT

have been explored [63,64], understanding of the distinc-
tion and connection between temporally uncorrelated and
correlated quantum noises in MIPT setups remain elusive.
In this Letter, we investigate quantum noises with distinct
temporal correlations in monitored circuits from both
entanglement and information perspectives and primarily
concentrate on the latter. The temporally uncorrelated noise
can be regarded as the Markovian limit, and the correlated
noises correspond to the strong non-Markovian limit [65].
We not only provide a thorough theoretical understanding
of the same area law q−1=3 scaling from the entanglement
perspective in the original volume law phase of MIPT but
also propose a steady state information protection setup
where the timescales of information protection reveal the
distinctions between the effects of temporally correlated
and uncorrelated quantum noises. The theoretical predic-
tion for this timescale is crucial for a better understanding
of the effects of quantum noises on information protection
and is potentially relevant for quantum error corrections
and quantum error mitigations [66–70].
To quantify the entanglement of the mixed states

generated by the noisy hybrid quantum circuits [71,72],
we use the mutual information [73] between the left and
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right half chains, defined as IA∶B ¼ SA þ SB − SAB, where
Sα is the von Neumann entropy of region α. Compared to
the logarithmic entanglement negativity which is a measure
of entanglement for mixed states [74–83], mutual informa-
tion shows qualitatively similar behaviors and provides a
more intuitive understanding within the framework of the
statistical model [62,84]. In terms of the corresponding
effective statistical model, as shown in Supplemental
Material (SM) [85], Sα is expressed as the free energy
difference of a classical spin model with specific boundary
conditions. The presence of temporally correlated noises
induces an effective length scale Leff ∼ q−1 and the free
energy scaling can be analytically obtained from the
Kardar-Parisi-Zhang (KPZ) theory directly [84,92–97] with
Leff , leading to q−1=3 scaling [62,85]. However, the
extension of KPZ understanding becomes challenging in
the presence of temporally uncorrelated noises with random
space-time locations. We provide analytical solutions for
the mechanism of q−1=3 scaling for the latter case.
More importantly, although the effects of noises with

different temporal correlations are indistinguishable from
the entanglement perspective, the information protection
timescales of the steady states can reveal the distinctions.
With temporally correlated noise, the q−2=3 timescale
emerges as the average height of the domain wall in the
statistical model. This scaling is given by KPZ theory with
Leff ∼ q−1 and the wandering exponent χ ¼ 2=3. The
temporally uncorrelated noise is more subtle as the encoded
information itself can modify the domain wall configura-
tion in the statistical model, resulting in the q−1=2 scaling
for information protection. This scaling draws an interest-
ing analogy between the hybrid circuits setup and the
Hayden-Preskill protocol for black holes [98]. We also
validate the theoretical predictions with extensive numeri-
cal results from the large-scale stabilizer circuit simulation.
Setup.—We consider a one-dimensional system with L

d-qudits under the hybrid evolution with brick-wall random
2-qudit unitary gates in the presence of the projective
measurements with probability pm and the quantum noises
with probability q. Different quantum channels can be
employed to model quantum noise, yielding qualitatively
similar results [85], while unital and nonunital quantum
channels induce very different consequences in variational
quantum algorithms [99]. We focus on the region pm < pc

m,
where pc

m corresponds to the MIPT critical point. The
initial state is chosen as a product state j0i⊗L and each
2-qudit gate is independently drawn from the Haar ensem-
ble (or from a random 2-qubit Clifford ensemble in
numerical simulation). The space-time locations of the
projective measurements and temporally uncorrelated
quantum noises are random as shown in Fig. 1(a). In
contrast, only the spatial locations of temporally correlated
quantum noises are random, i.e., the locations of quantum
noise show a stripe pattern in the time direction as shown in
Fig. 1(b). This is the strongest limit of non-Markovianity,

where the noise occurrence correlation at any two different
time slices at the same spatial position is constant 1.
We calculate the von Neumann entropy Sα and mutual

information IA∶B in the steady states where IA∶B saturates
and remains constant to reveal entanglement structures. We
note that the time required to reach the steady state is
Oðq−1Þ and size independent [100], differing from that of
MIPT without noises. To examine the capabilities of
information protection, after reaching the steady state, a
reference qudit (R) is maximally entangled with the middle
qudit of the system by forming a Bell pair to encode one-
qudit quantum information as shown in Fig. 1, see SM for
details [85]. Subsequently, we measure the mutual infor-
mation IAB∶R between the system qudits and the reference
qudit to study the timescale for information protection.
Statistical model.—We introduce the mapping between

the hybrid quantum circuit and the effective statistical
model (see SM [85] for more details). To calculate the von
Neumann entropy Sα from the free energy of the effective

FIG. 1. Circuit diagram in the presence of temporal uncorre-
lated (a) and temporal correlated (b) quantum noises (red circles).
The initial state is j0i⊗L and the projective measurements are
represented by green circles. After the system reaches the steady
state, a reference qudit (blue circle) is maximally entangled with
the middle qudit via forming a Bell pair to encode one-qudit
information. (c) shows the corresponding diagram of the Hayden-
Preskill protocol. The steady state can be regarded as a black hole
and Alice throws one-qudit information into the black hole to
destroy it. The timescale of information protection corresponds to
the time required for Bob to decode the information from
collecting the qudits released by Hawking radiation.
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statistical model, Sα is expressed as Sα ¼ limn→1S
ðnÞ
α ¼

limn→1½1=ð1 − nÞ�EU log½trρnα=ðtrρÞn�, where EU represents
the average over random two-qudit unitary gates, ρα is the

reduced density matrix of region α, and SðnÞα is the nth order

Renyi entropy given by SðnÞα ¼½1=ð1−nÞ�EU logfTr½ðCα⊗
IᾱÞρ⊗n�=Tr½ðIα⊗ IᾱÞρ⊗n�g, where C and I are cyclic and
identity permutations in n copies replicated Hilbert space,
respectively. The average of the logarithmic function can be

evaluated with the help of the replica trick [101,102], Sα ¼
limk→0

n→1
½1=kð1 − nÞ� log fZðn;kÞ

α =Zðn;kÞ
0 g ¼ limk→0

n→1
½1=kðn − 1Þ�

½Fðn;kÞ
α − Fðn;kÞ

0 �, where Zðn;kÞ corresponds to the partition
function of a ferromagnetic spin model in the triangular
lattice obtained by averaging over the random two-qudit
unitary gates. We note that ½1=kðn − 1Þ�Fðn;kÞ is indepen-
dent of ðn; kÞ and thus the limit can be safely taken. At each
site of the triangular lattice, the degrees of freedom are
formed by the permutation-valued spins σ defined on the
permutation group Snk [85]. The time runs from the bottom
to the top in this effective spin model. The von Neumann
entropy is represented as the free energy difference for the
spin model with different top boundary conditions:Cα ⊗ Iᾱ
and Iα ⊗ Iᾱ for Zðn;kÞ

α and Zðn;kÞ
0 , respectively, where

C ¼ C⊗k and I ¼ I⊗k. The bottom boundary is free due

to the initial product state and therefore Zðn;kÞ
0 ¼ d0 and

Fðn;kÞ
0 ¼ 0 [85]. In the following discussion, we focus on

the most dominant spin configuration in the large d limit,
meaning that the partition function Zðn;kÞ corresponds to the
weight of the dominant spin configuration.
In the absence of quantum noises and measurements,

Zðn;kÞ
AB is d0 because the dominant spin configuration is that

all the spins are C. Thus, SAB ¼ 0 consistent with the fact
that the steady state is pure. However, a domain wall
separating regions C and I with unit energy jCj ¼ kðn − 1Þ
is formed due to the fixed top boundary condition, which is
unique because of the unitary constraint [103,104].

Consequently, Fðn;kÞ
α ¼ jCjLA and thus SA ¼ LA obeys a

volume law.
In terms of the statistical model, the quantum noises act

as a magnetic field pining in the direction I [57–61] and
thus the weight of the spin configuration above for Fðn;kÞ

AB

with bulk spins in C is proportional to d−qLTjCj and it is not
favored anymore. Instead, quantum noises can relax the
unitary constraints and induce other possible spin configu-
rations. We leave the randomness of the locations of noises
as a quenched disorder and show how to find the dominant
spin configuration for each given trajectory of temporally
uncorrelated quantum noises. As indicated in Fig. 2(b),
spins remain C until the reversed evolution encounters a
quantum noise Nðx1; t1Þ. Spins inside the downward light
cone of this quantum noise will change from C to I while
other spins are unchanged. Other quantum noises inside the

light cone of Nðx1; t1Þ do not affect the spin configuration
because the spins are already in the I domain, while another
quantum noise outside the light cone, e.g., Nðx2; t2Þ, will
also change the spins within its respective backward light
cone from C to I. Consequently, the domain wall separating
regions C and I is formed by the boundary of light cones as
shown in Fig. 2(b) and can be regarded as a combination of
many small domain walls with an effective length scale
Leff ∼ q−1 determined by the average distance between
adjacent quantum noises.
In the presence of the projective measurements, we also

leave the randomness of the space-time locations as a
quenched disorder. The projective measurements can be
treated as random Gaussian potential and cause the fluc-
tuation of the domain wall away from its original respective
path. The free energy can be obtained by KPZ theory with
Leff ∼ q−1 and is consistent with the volume law entropy
for the hybrid circuit [85]. Although there are quantum
noises present below the original domain wall with an
average height q−1, the average height of the fluctuated
domain wall is q−2=3 given by the KPZ theory with
Leff ∼ q−1 and thus we can neglect the effects of these
quantum noises on the fluctuation of the domain wall. For
the mutual information IA∶B, the bulk terms proportional to
the subsystem size cancel out, but the boundary term from
the free energy of the domain wall near the midpoint is

(a) (b)

(c) (d)

t

x

t

x

t

x

x

t

A B

FIG. 2. The schematic dominant spin configurations: the upper
panel is related to entanglement generation while the lower panel
is related to information protection setup with extra Bell pair
forming at ðx0; t0Þ. x axis and y axis correspond to spatial and
time dimensions, respectively. Different colors represent the
different classical spin configurations in the statistical model.
N and R represent the location for quantum noise and the Bell
pair, respectively. Other quantum noises within the I domain are

not shown. (a) shows the dominant spin configuration for Fðn;kÞ
A .

The midpoint on the top boundary will change the length scale of
the domain wall near it. (b) shows the dominant spin configu-

ration for Fðn;kÞ
AB∪R. (c),(d) show the dominant spin configurations

for Fðn;kÞ
AB and Fðn;kÞ

AB∪R where spin freedom at ðx0; t0Þ are fixed to I
and C, respectively. In the presence of measurements, the domain
wall will fluctuate away from its original path.
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crucial because the effective length scale for SAðBÞ has been
changed as shown in Fig. 2(a), resulting in

IA∶BðqÞ ∼ q−1=3: ð1Þ

The theoretical prediction can be straightforwardly
extended to temporally correlated quantum noise: it can
be treated as emergent new boundaries that directly induce
an effective length scale Leff ∼ q−1 [85].
Furthermore, we consider the abilities of information

protection in the steady state in the presence of quantum
noises. One qudit information is encoded into the steady
state by forming a Bell pair between a reference qudit and a
middle qudit at ðx0; t0Þ of the system, see Fig. 1. The
encoded information can be measured by the mutual
information between the system AB and the reference
qudit R

IAB∶Rðt; qÞ ¼ SABðt; qÞ þ SRðt; qÞ − SAB∪Rðt; qÞ: ð2Þ

Because the reference qudit and the middle qudit form a
Bell pair, in the corresponding statistical model, the spin at
position ðx0; t0Þ is determined by the top boundary con-
dition of the reference qudit. We also use R to represent this
Bell pair, which is fixed to I, C, and C for SAB, SR, and
SAB∪R, respectively.
Although the scalings of entanglement for temporally

uncorrelated and correlated quantum noises are the same,
the timescales of information protection are different. The
dominant spin configuration for Fðn;kÞ

R is where all the spins
are I except the spin R fixed to C, therefore, SR is constant
with contribution from the bubble created by RC. For the
temporally correlated quantum noises, the dominant spin

configurations for Fðn;kÞ
AB and Fðn;kÞ

AB∪R change when the spin R
crosses the domain wall [85]. Therefore, the timescale is
given by the average height of the domain wall which is q−1

and q−2=3 without and with monitored measurements.
On the contrary, for the temporally uncorrelated quantum

noises, R can act similarly to quantum noise and change the
spins inside its light cone from C to I as shown in Figs. 2(c)
and 2(d). Therefore, the domain wall configuration has
been modified and the timescale of information protection
does not correspond to the height of the domain wall. A
detailed analysis based on the statistical model is given in
SM [85]. This information protection process can also be
understood as a Hayden-Preskill protocol [98] as shown in
Fig. 1(c). The steady state can be regarded as a black hole
formed long ago that is maximally entangled with the
environment, which is under the control of Bob. To destroy
her recorded one-qudit information, which is maximally
entangled with a reference qudit of Charlie, Alice throws it
into the black hole. The quantum noise channels can be
regarded as Hawking radiation to the environment. The
Hayden-Preskill protocol tells us that the environment, i.e.,
Bob, only needs slightly more than one qudit from the

Hawking radiation to decode Alice’s information.
Therefore, the timescale of information protection corre-
sponds to the time required for a quantum noise with
probability q to appear in the light cone of the encoded
information with area Oðt2Þ, and hence the timescale is
q−1=2 [85]. The presence of measurements will not alter the
qualitative arguments above. Therefore, the timescales of
information protection for temporally correlated and uncor-
related quantum noises in MIPT are q−2=3 and q−1=2,
respectively. We can also apply statistical model under-
standing to the noiseless case, where the information can be
protected by the subsystem of monitored circuits
(pm < pc

m) forever or with timescale L2=3
sub for Lsub > L=2

or Lsub < L=2, respectively [85].
Clifford simulation.—To support the theoretical predic-

tions, we use QuantumClifford.jl package [105] to perform
extensive large-scale Clifford simulations [106,107] where
the random Clifford gates form a unitary 3-design [108].
We use the reset channelRiðρÞ ¼ triðρÞ ⊗ j0ih0ji to model
the quantum noise, which is easy to implement in the
current generation of quantum hardware [109,110], while
our theoretical analysis does not depend on the choice of
quantum channels. And we set the probability of projective
measurement 0 < pm < pc

m. The numerical results with
quantum dephasing channels and pm > pc

m can be found in
SM [85].
The dynamics of mutual information IAB∶R in the

presence of temporally uncorrelated and correlated quan-
tum noises are shown in Fig. 3 (see SM [85] for more
numerical results for generic non-Markovian cases). The
data with different system sizes and noise probabilities can
be collapsed with rescaled time t=q−1=2 and t=q−2=3 for
temporally uncorrelated and correlated quantum noises,
consistent with the theoretical predictions. The fitting
of the half-chain mutual information shown in the inset

FIG. 3. The information protection dynamics. q represents the
probability of reset channels and pm ¼ 0.2 < pc

m is the proba-
bility of projective measurement. (a) shows the mutual informa-
tion IAB∶R vs rescaled time t=q−1=2 for temporally uncorrelated
quantum noises. The inset shows the fitting of mutual information
IA∶B with the function IA∶BðqÞ ¼ aqb. b is very close to the
theoretical prediction −1=3. (b) shows the mutual information
IAB∶R vs rescaled time t=q−2=3 for temporally correlated quantum
noises.
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in Fig. 3(a) gives the q−1=3 scaling. We have also demon-
strated the scaling of von Neumann entropy [85].
Discussions and conclusion.—We provide a comprehen-

sive analytical understanding of the impacts of quantum
noises with different temporal correlations on entanglement
generation and information protection: the mutual infor-
mation satisfies the scaling q−1=3 for both temporally
uncorrelated and correlated noise, while the timescale of
information protection for temporally uncorrelated and
correlated noise is q−1=2 and q−2=3, respectively. These
theoretical predictions are further demonstrated by con-
vincing numerical results from Clifford circuit simula-
tions [85].
It is worth noting that the information protection capacity

of non-Markovian noise (temporally correlated) is much
stronger than the Markovian noise case when q is small,
which is consistent with recent studies on the unexpected
benefits brought by non-Markovian noise in quantum
simulation [111] and quantum computation [112]. In
SM [85], we also investigated the information protection
capacity for a general non-Markovian noise interpolating
between the Markovian and the strongest non-Markovian
limits in the no measurement limit. We found that the
information protection timescale changes continuously
from q−1=2 in the Markovian limit to q−1 in the strong
non-Markovian limit, consistent with the expectation.
Furthermore, our setup realizes the Hayden-Preskill

protocol in hybrid quantum circuits by identifying the
quantum noise channel (unitary evolution with ancilla
qudits) as Hawking radiation through the ancilla qudits.
The setup in this Letter overcomes the subtleties in the
previous Hayden-Preskill analogy in hybrid quantum
circuits [113]. By coupling the reference qudit to the
system after reaching the steady state, i.e., the black hole
with half of the qudits radiated out and maximally
entangled with the environment, we recover the Hayden-
Preskill thought experiment, in which Bob can successfully
decode the information, and hence substantially reduce the
mutual information between the black hole and Charlie
with Oð1Þ more qubits radiated.
In conclusion, we have presented a comprehensive

theoretical framework for understanding entanglement
generation and information protection in noisy hybrid
quantum circuits. This framework is applicable to both
temporally uncorrelated (Markovian) and correlated (non-
Markovian) quantum noises. This work not only reveals a
thorough theoretical understanding of q−1=3 scaling in the
presence of quantum noises on MIPT setup but also
highlights the distinctions between the effects on informa-
tion protection of quantum noises with different temporal
correlations which are indistinguishable from the entangle-
ment perspective and initial state information protection
protocol [85,114,115]. Furthermore, our theoretical analy-
sis can be extended to the cases of quantum noises with
system size-dependent probability, where MIPT still exists

and a new noise-induced entanglement phase transition has
been investigated [115].
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