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Probing many-body localization by excited-state variational quantum eigensolver
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Nonequilibrium physics including many-body localization (MBL) has attracted increasing attentions, but
theoretical approaches of reliably studying nonequilibrium properties remain quite limited. In this Letter, we
propose a systematic approach to probe MBL phases via the excited-state variational quantum eigensolver
(VQE) and demonstrate convincing results of MBL on a quantum hardware, which we believe paves a promising
way for future simulations of nonequilibrium systems beyond the reach of classical computations in the noisy
intermediate-scale quantum (NISQ) era. Moreover, the MBL probing protocol based on excited-state VQE is
NISQ-friendly, as it can successfully differentiate the MBL phase from thermal phases with relatively shallow
quantum circuits, and it is also robust against the effect of quantum noises.
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Introduction. Many-body localization (MBL) is a novel
dynamical phenomenon occurring in isolated many-body
quantum systems. It has long been established that the quan-
tum systems may enter MBL phases in the presence of
sufficiently strong random disorder [1–11] or quasiperiodic
(QP) potential [12–17] in one-dimensional (1D) systems. In
MBL phases, the system fails to thermally equilibrate and
exhibits exotic behaviors, such as “area law” entanglement
for highly excited states [8–10], logarithmic spread of entan-
glement [7], and emergent local integrals of motion [10,11].
Such exotic nonequilibrium phases are qualitatively different
from thermal phases that are often associated with the eigen-
state thermalization hypothesis (ETH) [18–22] and exhibit
“volume law” entanglement in highly excited states [23,24].
However, various aspects of MBL remain elusive so far; for
instance, whether MBL phases can survive in more than one
dimensions is still under debate considering nonperturbative
avalanche mechanism [25–27].

To advance our understanding of nonequilibrium quantum
phases, it is crucial to unambiguously detect and characterize
possible MBL phases for various systems. Numerically, one
can probe MBL by calculating the entanglement entropy or
level statistics for eigenstates of a Hamiltonian via exact diag-
onalization, or directly simulating dynamical signatures such
as charge imbalance or logarithmic entanglement spreading,
following a quantum quench with time-evolution methods.
But, existing numerical approaches are often severely re-
stricted due to the exponential scaling of Hilbert space as well
as the excessively long evolution time required to simulate
steady-state behaviors. Turning to experimental investiga-
tions, current hardware platforms still face many challenges,
such as short coherence time and limited controllability for the
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Hamiltonian engineering. That whether MBL exists in more
general systems, for example, higher dimensional systems
[28–31], has not been rigorously established from current nu-
merical simulations or analog-simulation based experiments.

Quantum computer naturally helps as it can potentially
simulate large quantum systems, beyond the capability of
classical computers. A common approach is to directly sim-
ulate the time evolution of a quantum system using a quantum
circuit and determine whether the system will thermalize af-
ter a long time by measuring dynamic observables such as
charge imbalance. However, currently such an idea is not
NISQ-friendly since the required simulation time to confirm
the existence of MBL can be much longer than the coherence
time of the currently available quantum hardware. Namely, we
are faced with the same challenge as other analog experiments
without quantum error corrections. Instead, here we propose a
more NISQ-friendly approach to detect MBL, relying less on
quantum hardware resources and being more robust against
noises in quantum hardware.

In this Letter, we propose a general MBL-probing protocol
basing on variational quantum algorithms (VQAs). Recently,
various quantum-classical hybrid variational algorithms, such
as variational quantum eigensolver [32] and quantum approx-
imate optimization algorithm (QAOA) [33–36], which are
tailored for the NISQ hardware [37–39], have been proposed.
VQE is not only a representative of VQA but also holds great
potentials for near-term applications. For different practical
problems encoded in VQE, we can define different objective
functions (also known as cost functions), and the solutions are
expected to give the minimum objective function. For ground
state (lowest eigenstate) preparation for a Hamiltonian H , the
objective function is defined as the expectation value of H .
Firstly, we will generate a trial state |ψ (θ )〉 = U (θ )|ψ0〉 to
approximate the solution, where |ψ0〉 is a given initial state
and U (θ ) is an unitary matrix represented by the parameter-
ized quantum circuit (PQC) as shown in Fig. 1. When the
PQC is deep enough, the ground state can be exactly written
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FIG. 1. The circuit structure for the excited-state VQE and eigen-
state witness measurement. In preparation circuit part, we first
prepare an antiferromagnetic (AF) state |0101...〉 from the initial
state |0000...〉 and then apply one layer of two-qubit entangling
gates to generate the input state |ψ0〉 for the PQC. The layer of
two-qubit entangling gates is denoted as U0(�θ 0) and U0(�θ0) =∏N−1

j=0 exp(
iπθ0

j

4 (σ x
j σ

x
j+1 + σ

y
j σ

y
j+1)). We assume two-qubit entangling

gates on different qubits sharing the same weight θ0 for simplicity.
In the PQC part, each block of the ansatz is defined as U (�θ k ) =
(
∏N−1

j=0 Rz(θ k
2, j ))U0(�θ k

1 ), which respects U (1) symmetry. Two-qubit
entangling gates on different qubits have different weights. The depth
of the PQC (number of blocks) DVQE can be adjusted.

as |ψ (θ )〉 for suitable parameters. Then, by updating the pa-
rameters in shallow PQC based on gradient descent, we will
find a final converged state |ψ (θ )〉 whose objective function
can not decrease anymore and |ψ (θ )〉 will be the approximate
ground state. The VQE has been exploited in a variety of
contexts from quantum chemistry [40–45] and many-body
physics [34,46–52], to lattice gauge theories [53,54].

VQE can also be customized to search for excited states.
There are several proposals utilizing VQE to discover low-
lying excited states of quantum many-body systems, such as
orthogonality constrained VQE [55–58], which adds penalty
projector terms to the Hamiltonian cost function that project
out lower energy states, and subspace expansion method
[59,60], which prepares variational states that span the low-
energy manifold. Furthermore, VQE can be adapted to search
for highly excited states. The objective functions utilized in
this case are either the energy variance C(θ ) = 〈H2〉 − 〈H〉2

[61–69], which only vanishes for eigenstates of H and is
greater than zero for the superposition of different eigenstates
of H (see the Supplemental Material (SM) for details [70]),
or 〈(H − λ)2〉 [32,34,71–73], which specifically targets an
excited state closest to the energy λ. The many-body spectrum
can be reconstructed by scanning through a range of λ values
within the energy width of H .

In this Letter, we propose to use the excited-state VQE
with the energy-variance objective function to detect MBL
phases. If the circuit ansatz is deep enough and with sufficient
expressivity, then the converged state should be an eigenstate
of the system. One can then measure the quantum state to infer
purity or real-space inverse participation ratio (IPR) [74,75] as
the indicators of MBL phases. This option is straightforward,
but it requires a (possibly exponentially) deep and coherent
quantum circuit beyond the NISQ regime. We propose an
alternative approach, where only the excited-state VQE with
a NISQ compatible ansatz is required. In this case, the con-

verged state is not necessarily an eigenstate, especially on the
thermal side, where the eigenstate manifests “volume law”
entanglement and may not be fully represented with a shallow
circuit. Therefore, the indicator to differentiate between MBL
and ergodic phases is replaced with the converged perfor-
mance of the excited-state VQE. On the MBL side, the final
state is more quickly converged in terms of the eigenspace
distribution. Accordingly, we propose an experimentally mea-
surable quantity that could help assess a state’s convergence in
the eigenspace. Since our proposed method does not rely on
any properties of a particular model, it can be readily applied
to a broad range of systems.

Model.—We illustrate the proposed method by investigat-
ing the interacting Aubry-André (AA) model [13,15,76–79], a
well-studied system hosting the many-body localization tran-
sition. The Hamiltonian of the interacting AA model reads:

H =
∑

i

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + V0σ

z
i σ z

i+1

)

+W
N∑

i=1

cos(2πηi + φ)σ z
i , (1)

where W is the strength of quasiperiodic potential, σα are
Pauli matrices, N is the size of the system, and φ is the phase
of the cosine potential. We set V0 = 0.5 and η = (

√
5 − 1)/2

throughout the work. We can numerically determine the MBL
transition point via the level spacing ratios for this model
[3,80] (see the SM for details [70]).

Circuit ansatz.—Our proposed circuit ansatz for the
excited-state VQE consists of two parts: the input-state prepa-
ration circuit and the parameterized quantum circuit, acting
as the variational ansatz to optimize the cost function, as
shown in Fig. 1. Since the AA model conserves the total spin
polarization along the z direction, we focus on the total spin
Mz = ∑

i σ
z
i = 0 sector. Namely, the quantum gates employed

in the circuit ansatz should respect this U (1) symmetry. The
cost function for the excited-state VQE is the energy variance
〈H2〉 − 〈H〉2, as mentioned before.

Eigenspace inverse participation ratio.—The final con-
verged state |ψ〉 obtained from the excited-state VQE is a
superposition of eigenstates, localized within an energy win-
dow, which may not be easily resolved by the energy variance
indicator because of the extremely small energy separation
between adjacent energy levels (see the SM for details [70]).
Theoretically, we may use the eigenspace inverse participation
ratio (EIPR) [73] to gauge the extent of convergence onto an
eigenstate under the excited-state VQE minimization:

EIPR(|ψ〉) =
∑

n

|ψn|4, (2)

where |ψ〉 = ∑
n ψn|n〉 and H |n〉 = λn|n〉 with |n〉 is the nth

eigenstate of the Hamiltonian H . For each exact eigenstate of
H , its EIPR is one. For a state which is a linear superposition
of different eigenstates, its EIPR is less than one. For the
maximally randomized state in eigenspace |ψ〉 = ∑

n
1√
2N

|n〉,
where 2N is the dimension of the Hilbert space of the sys-
tem, EIPR = 1/2N → 0 as N → ∞ in the thermodynamic
limit. Consequently, EIPR is capable in efficiently determin-
ing whether the final converged state is exactly an eigenstate
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FIG. 2. EIPR of the input state |ψ0〉 obtained from the prepara-
tion circuit for W = 1.5 and 8.0, respectively. Here N = 12.

of the Hamiltonian H or a superposition of multiple eigen-
states.

We firstly investigate the EIPR for the input state |ψ0〉,
created with the preparation circuit of Fig. 1. The results
are shown in Fig. 2. When the system is in the MBL phase
(W = 8.0), some of the shallow-circuit input states (adjusted
by the parameter θ0) may achieve high EIPR, implying the
“area law” entanglement [7–10] for highly-excited eigen-
states. On the other hand, when the system is in the thermal
phase (W = 1.5), all input states consistently score low EIPR,
indicating that a shallow circuit has difficulty to approximate
the system’s eigenstates. Overall, the results shown in Fig. 2
are consistent with the understanding of the AA model. Fur-
thermore, we find a positive correlation between EIPR of input
states and EIPR of output states, as well as a positive correla-
tion between energy of input states and energy of output states
(see the SM for details [70]). For the following investigations,
we then fix θ0 = 0.4 for input-state preparation. As shown
in Fig. 2, the MBL phase has a smaller initial EIPR and the
input state’s energy is in the middle of energy spectrum in
both phases. By this choice, under the excited-state VQE, the
output states will likely to converge to some highly excited
states, and a high EIPR for output state in MBL phase can be
reliably attributed to the nature of the phase instead of a purely
better optimization start point.

With the noiseless quantum circuit simulation [81], we
calculate EIPR for converged states with varying PQC depth.
Theoretically, the expressivity of the variational ansatz in-
creases with the circuit depth, and the achieved EIPR should
also improve correspondingly. Indeed, the results for con-
verged states’ EIPR, as shown in Fig. 3, support this intuition.
Although the initial EIPR of the MBL phase is smaller than
that of the thermal phase and the optimization starts from the
same input state, the final EIPR of the MBL phase is much
larger and extremely close to 1 even with a relatively shallow
quantum circuit. There is a clear gap of EIPR between thermal
and MBL phases, and the gap grows with system size (see
the SM for details [70]). These results confirm that excited-
state VQE with shallow circuits indeed performs qualitatively
better for MBL systems.

Experimental relevance.—Though EIPR of the output
states significantly differs between MBL and thermal phases
in numerical simulations, it can not be directly observed
in experiments. To determine whether a state is sufficiently
enough to reach an eigenstate, an experimentally accessible

FIG. 3. EIPR of final converged states from excited-state VQE
on 12-qubit system with different potential strength W .

proxy is desired. To this end, the eigenstate witness [73]
is such a quantity which can be experimentally determined
via purity measurements. The circuit for eigenstate witness
measurement is shown in Fig. 1.

We illustrate the notation of the eigenstate witness as fol-
lows. The output state obtained from the excited-state VQE
can be written as |ψ〉 = ∑

n αn|n〉, where |n〉 represents eigen-
state of H with eigenenergy λn. With an extra ancilla qubit
initialized in a superposition state |+〉 = (|0〉 + |1〉)/

√
2, af-

ter a controlled time evolution under H , the reduced density
matrix for the ancilla qubit reads:

ρreduced =
(

1
2

1
2

∑
n |αn|2eiλnt

1
2

∑
n |αn|2e−iλnt 1

2

)
, (3)

and the eigenstate witness is defined as the purity of the
ancilla qubit: r = Tr(ρ2

reduced ), which can be estimated using
randomized measurements in experiments [82–84] or a sim-
ple state tomography. Such witness is lower bounded by the
corresponding EIPR of the output states and can reflect the
convergence performance of the excited-state VQE (see the
SM for details [70]).

We choose the evolution time t = 1.0/W , as the bandwidth
is roughly proportional to W . The results of ln(1 − r) are
shown in Fig. 4. For each data point in Fig. 4, the number
is averaged over 10 best out of 100 independent optimiza-
tion results for the excited-state VQE. Both EIPR and r of
the MBL phase are larger than those of the thermal phase.
These differences will be more prominent as the system size
increases.

Theoretically, ln(1 − r) should approach the minus infinity
if the output state is exactly an eigenstate of the system.

FIG. 4. (a) ln(1 − EIPR) of final converged states. (b) ln(1 − r)
of final converged states, where r is the eigenstate witness and exper-
imentally accessible. Here N = 12.
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TABLE I. Fitted circuit depths required to perfectly converge to
the excited state for different W .

W 1.5 2.0 2.5 3.5 4.0 8.0

Depths 245 197 256 52 38 14

However, due to the effectiveness of an optimization routine
and numerical accuracy of the simulation, the (1 − r) value
may only reach an “effective zero” from above. In Fig. 4,
(1 − EIPR) and (1 − r) have this effective zero, which is
roughly determined by the data from W = 100.0, supposedly
in a deep region of the MBL phase. The effective zero of
(1 − r) is around −8.9 in the log scale. And the circuit depth
required to reach this effective zero depends on Hamiltonian
parameter W . We estimate the required depth in Table I [the
required depth is fitted by assuming linear relation between
ln(1 − r) and the circuit depth]. On the thermal side, the
depth required for perfect excited-state convergence is close
to 2N ; while on the MBL side, the depth required is in the
order of O(N ). The depths needed to reach effective zero can
serve as another indicator differentiating between the MBL
and thermal phases in systems whose phases are unknown. In
particular, it is easier to distinguish the two phases when the
system size increases.

Effect of quantum noise.—Our approach of probing MBL
phases has potential quantum advantage as it can be ex-
tended to larger systems and higher dimensions in principle.
However, for current quantum computing hardware, we must
consider the effects of noise which may compromise the per-
formance of excited-state VQE. One important question is
whether we can apply our method to a real device with noises.
To answer this question, we carry out similar computation in
the presence of a quantum depolarizing channel with noise
strength p = 10−3 after each two-qubit gate. The results are
averaged over 5 best of 20 independent trials on an 8-qubit
system (the results for larger size systems with the presence of
quantum noise obtained by the Monte Carlo trajectory method
can be found in the Supplemental Material). As indicated in
Fig. 5(a), r does not keep increasing with PQC depths any
more; instead, it could decrease due to the accumulated noisy
effects for deeper PQC. Nonetheless, the eigenstate witness r
behaves sufficiently distinct in the two phases. The magnitude
of r from the MBL side is still significantly larger than that
from the thermal side. Besides, r shows better noise resilience

FIG. 5. (a) r of final converged states from a noisy simulation
without Trotter decomposition. (b) r of final converged states from
a noisy simulation with one time slice Trotter decomposition. Here
N = 8.

FIG. 6. VQC using hardware-efficient ansatz to approximate
controlled time evolution. The two-qubit entangling gate is CZ gate.

when the system enters the MBL side. In the MBL phase,
local perturbations spread only logarithmically in time [85], as
opposed to the algebraic spreading in thermalizing dynamics.
Therefore, r of the thermal phase gets more severely affected
due to the faster spreading of quantum noise.

When implementing the controlled time evolution in a real
device, one also needs to consider the error brought by the
Trotter decomposition. Here we design a type of decompo-
sition that reduces the number of two-qubit gates, and we
propagate the system with only one time slice to further re-
duce the total circuit depth for the digital quantum simulation
(see the SM for details [70]). The eigenstate witness r, after
incorporating the effects of both noise and Trotter decomposi-
tion, is shown in Fig. 5(b), which still behaves distinctly in the
two phases. The numerical results confirm that our proposal
is NISQ-friendly and ready to be validated in a quantum
device.

Real Hardware Experiments.—We apply our method to a
four-site model on the available IBM open access quantum
hardware. Since the controlled time evolution module is still
expensive to implement on NISQ devices [86,87], we further
reduce the quantum resources by utilizing a variational quan-
tum circuit (see Fig. 6) to approximate the controlled time
evolution module. The VQC is optimized via the normal VQE
classically with following cost function:

C(θ ) = −Tr(U (θ )V †)

2N
, (4)

where U (θ ) is the unitary ansatz of VQC and N is the number
of qubits, and

V =
(

I 0
0 eiHt

)
, (5)

with the ancilla qubit initialized to |+〉 = (|0〉 + |1〉)/
√

2
state. Because U (θ )V † is also a unitary matrix of dimension
2N , the cost function has a minimum of −1 when U (θ ) = V .
We can use U (θ ) as the ansatz to approximate the controlled
time evolution in the real hardware. Such a variational circuit
is constructed via the hardware-efficient ansatz and thus has
less number of two-qubit gates in total while maintaining
a high fidelity against the exact controlled time evolution
(see the Supplemental Material for more detail). For large
system sizes, the loss function defined above is hard to sim-
ulate. However, the unitary U to approximate the controlled
time evolution module V can also be obtained based on
quantum-assisted quantum compiling (QAQC) algorithm with
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FIG. 7. Eigenstate witness measured on the noisy simulator and
real hardware (IBM_Santiago) (in the inset ∗ means the results are
processed with readout error mitigation). The estimation error bars
due to finite shots of measurement are also included.

an alternative loss function using the Local Hilbert-Schmit
Test (LHST) [88], which has better scalability and less barren
plateau effect. Therefore, we can carry out the optimization
on real quantum hardware when the system size is too large
to simulate in silico, i.e., we trade off the depth of the time
evolution circuit with a large number of shallower variational
circuit execution on real devices to make our scheme more
suitable on NISQ devices.

We demonstrate our method in a noisy hardware simulator
based on IBMQ hardware device (specifically we use the
IBM_Santiago instance). We set W = 8.0 for the MBL phase
and W = 1.5 for the thermal phase, and we choose the evolved
time t = 0.15/W . The parameters of the excited-state VQE
and VQC are both determined by the best of 20 independent
VQE trials. In Fig. 7, the results of the noisy simulator are the
average of 100 ∗ 8192 independent measurement shots and
the results of real hardware are the average of 50 ∗ 8192 inde-
pendent measurement shots. A qualitative difference is clearly
seen which is sufficient to distinguish the two phases. In fact,
for this case, the difference obtained in quantum hardware

experiments is even more evident than that obtained from the
noisy simulation.

Discussions and concluding remarks.—We have demon-
strated that the excited-state VQE with EIPR constitutes a
reliable method to probe MBL phase. Since this proposed
method requires only a shallow circuit, it can be executed
on NISQ hardware when we substitute the EIPR with the
eigenstate witness protocol. It is worth noting that though
we can use a variational quantum circuit to approximate the
controlled time evolution module in principle, this approxi-
mation is still challenging on a real NISQ device due to the
variational optimization methodology and the depth required
for the variational circuit replacement to achieve satisfying
fidelity. Still, compared to the conventional approaches that
characterize the MBL phase with late-time dynamics, the evo-
lution time required in our method is much shorter and is more
compatible with the current-generation quantum computers.

There are many promising directions for further studies.
In the present work we have considered only one circuit
ansatz. Other different PQC ansatz for excited-state VQE can
also be systematically examined for potential benefits. The
circuit ansatz with better expressiveness may characterize the
highly excited states better, and the optimal ansatz can be
automatically designed via techniques from quantum archi-
tecture search [89,90]. We can also utilize post-processing
enhancements [91] which hopefully improve the performance
of excited-state VQE. As our method is independent of the
microscopic details of the model considered in this work, it
can be straightforwardly extended to investigate other models
which might host many-body localization transitions. More-
over, our method can hopefully investigate whether MBL
phases can survive in higher dimensions in the future, once
the quantum hardware can offer longer coherence time.
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