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Abstract
Quantum architecture search (QAS) is the process of automating architecture engineering of
quantum circuits. It has been desired to construct a powerful and general QAS platform which can
significantly accelerate current efforts to identify quantum advantages of error-prone and
depth-limited quantum circuits in the NISQ era. Hereby, we propose a general framework of
differentiable quantum architecture search (DQAS), which enables automated designs of quantum
circuits in an end-to-end differentiable fashion. We present several examples of circuit design
problems to demonstrate the power of DQAS. For instance, unitary operations are decomposed
into quantum gates, noisy circuits are re-designed to improve accuracy, and circuit layouts for
quantum approximation optimization algorithm are automatically discovered and upgraded for
combinatorial optimization problems. These results not only manifest the vast potential of DQAS
being an essential tool for the NISQ application developments, but also present an interesting
research topic from the theoretical perspective as it draws inspirations from the newly emerging
interdisciplinary paradigms of differentiable programming, probabilistic programming, and
quantum programming.

1. Introduction

In the noisy intermediate-scale quantum technology (NISQ) era [1], the hybrid quantum–classical (HQC)
computational scheme, combining quantum hardware evaluations with classical optimization outer loops,
is widely expected to deliver the first instance of quantum advantages (for certain non-trivial applications)
in the absence of fault-tolerant quantum error corrections. Several prototypical examples in this category
include finding the ground state of complex quantum systems by variational quantum eigensolver (VQE)
[2–4], exploring better approximation for NP hard combinatorial optimization problems by quantum
approximation optimization algorithms (QAOA) [5–7], and solving some learning tasks in either the
classical or quantum context by the quantum machine learning setup [8–12].

Under the typical setting in the HQC computational paradigm, the structure of variational ansatz is held
fixed and only trainable parameters are optimized to satisfy an objective function. This lack of flexibility is
rather undesirable as different families of parametrized circuits may differ substantially in their expressive
power and entangling capability [13, 14]. Moreover, in the NISQ era, a thoughtful circuit design should
minimize the consumption of quantum resources due to decoherence and limited connectivity among
qubits in current quantum hardwares. For instance, the number of two-qubits gates (or the circuit depth)
should be minimized to reduce noise-induced errors. Additional error mitigation strategy should be
conducted without using extra qubits if possible. With these requirements in mind, the design of an
effective circuit ansatz should take into account of the nature of the computational problems and the
specifications of a quantum hardware as well. We term the automated design of parameterized circuits, in
the aforementioned setting, as quantum ansatz search (QAS).
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In a broader context, we denote QAS as quantum architecture search, which covers all scenarios of
quantum circuit design and goes beyond the design of a variational ansatz for HQC algorithms. QAS can
facilitate a broad range of tasks in quantum computations. Its applications include but not limited to
decomposing arbitrary unitary [15] into given quantum gates, finding possible shortcuts for
well-established quantum algorithms [16, 17], exploring optimal quantum control protocols [18–20],
searching for powerful and resource-efficient variational ansatz [21], and designing end-to-end and
task-specific circuits which also incorporate considerations on quantum error mitigation (QEM), native
gate set, and topological connectivity of a specific quantum hardware [22, 23].

Neural architecture search (NAS) [24], devoted to the study and design of neural networks shares many
similarities with designing parameterized quantum circuits. The common approaches for NAS include
greedy algorithms [25], evolutionary or genetic algorithms [26–30], and reinforcement learning (RL) based
methods [31–34]. It is interesting to witness that the progress in QAS follows closely the ideas presented in
NAS. Recent works on quantum circuit structure or ansatz design also exploited greedy methods [35–37],
evolutional or genetic methodologies [16, 17, 21–23, 38] and RL engine based approaches [19, 39] for tasks
such as quantum control, QEM or circuit ansatz searching.

Recently, differentiable neural architecture search (DARTS) has been proposed [40] and further refined
with many critical improvements and generalizations [41–46]. The key idea of a differentiable architecture
search is to relax the discrete search space of neural architectures onto a continuous and differentiable
domain, rendering much faster end-to-end NAS workflow than previous methods. Due to the close relation
between NAS and QAS, it is natural to ask whether it is possible to devise a differentiable quantum
architecture search (DQAS) incorporating DARTS-like ideas. Our answer is affirmative; as presented in this
work, we constructed a general framework of DQAS that works very well as a universal and fully automated
design tool for quantum circuits. As a general framework sitting at the intersection of newly emerging
interdisciplinary paradigms of differentiable programming, probabilistic programming and quantum
programming, DQAS is of both high theoretical and practical values across various fields in quantum
computing and quantum information processing.

The organization of this work goes as follows. In background and related work section, we review
backgrounds and relevant works on fields including NAS, QAS and QAOA. In methods section, we
introduce the setup of the DQAS algorithm, where the overall workflow and the main components are both
discussed. In applications section, we demonstrate various applications in quantum computing domain
enabled by DQAS, including QEM and variational quantum algorithm design examples. We conclude with
a brief discussion section. The appendix contains more details and further applications of DQAS [47].

2. Background and related work

Differentiable neural architecture search. NAS [48] is a burgeoning and active field in AutoML, and the
ultimate goal of NAS is to automate the search for a top-performing neural network architectures for any
given task. Popular approaches to implement NAS include reinforcement learning [31], in which an RNN
controller chooses an action on building the network structure layerwise from a discrete set of options; and
evolutionary or genetic algorithms [27, 28, 30], in which a population of network architectures is kept,
evaluated, mutated for the fittest candidates. Such RL or evolutionary algorithms are rather resource
intensive and time consuming, since the core task involves searching through an exponentially large space of
discrete choices for different elementary network components.

Recently, differentiable architecture search [40] and its variants have been proposed and witnessed a
surge in the number of related NAS studies [41–46, 49–57]. Under the DARTS framework, the network
architecture space of discrete components is relaxed into a continuous domain that facilitates search by
differentiation and gradient descent. The relaxed searching problem can be efficiently solved with noticeably
reduced training time and hardware requirements.

In the original DARTS, the search space concerns with choices of distinct microstructures within one
cell. Two types of cell are assumed for the networks: normal cell and reduction cell. The NAS proceeds by
first determining the microstructures within these two types of cell, then a large network is built by stacking
these two cell types up to a variable depth with arbitrary input and output size. Within each cell, two
inputs, four intermediate nodes and one output (concatenation of four intermediate nodes) are presented
as nodes in a directional acylic graph. For each edge between nodes, one needs to determine optimal
connection layers, e.g. conv with certain kernel size, or max/average pooling with given window size,
zero/identity connections and so on. To make such search process differentiable, we assume each edge is
actually the weighted sum of all these primitive operations from the pool, i.e. o(x) =

∑
i softmax(αi)oi(x)

where oi stands for ith type of layers primitives and αi is the continuous weights which determines the
structure of neural network as structural parameters. Therefore, we have two sets of continuous parameters:
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Figure 1. Schematic illustration of DQAS. We sample a batch of circuit configurations for each epoch from probabilistic model
P(k,α). We then compose corresponding quantum circuits by filling in operations and parameters from two pools. We can
evaluate quantum circuits and compute final objective L where α,θ can be adjusted accordingly with gradient based
optimization method.

structure weights α which determines the optimal network architecture by pruning in evaluation stage, and
conventional parameters in neural network ω. Via DARTS setup, neural architecture search turns into a
bi-optimization problem where differentiation is carried out end-to-end.

DARTS requires the evaluation of the whole super network where each edge is composed of all types
layers. This is memory intensive and limits its usage on large dataset or enriched cell structures. Therefore,
there are works extending DARTS idea while enabling forward evaluation on sub network, usually using
only one path [46, 57] or two [52]. Specifically, in [46], the authors viewed the super network as a
probabilistic ensemble of subnetworks and thus variational structural parameters enter into NAS as
probabilistic model parameters instead. So we can sample subnetworks from such probabilistic distribution
and evaluate one subnetwork each time. This is feasible as probabilistic model parameters can also be
updated from general theory for Monte Carlo expectations’ gradient in a differentiable approach [58].

There are additional follow-up works that focus on improving drawbacks of DARTS with various
training techniques. In general, these DARTS-related techniques are also illuminating and inspirational for
further DQAS developments in our work.

Related works on QAS. Quantum architecture search, though no one brand it as this name before, is
scattered in the literature with different contexts. These works are often specific to problem setup and
denoted as quantum circuit structure learning [35], adaptive variational algorithm [36], ansatz architecture
search [37], evolutional VQE [21], multipleobjective genetic VQE [22] or noise-aware circuit learning [23].
The tasks they focused are mainly in QAOA [37] or VQE [21, 22, 35, 36] settings. From higher theoretical
perspective, some quantum control works can also be classified as QAS tasks, where optimal quantum
control protocol is explored using possible machine learning tools [19, 39].

These QAS relevant works are closed related to NAS methodologies. And this relevance is as expected,
since quantum circuit and neural network structure share a great proportion of similarities. The
mainstream approach of QAS is evolution/genetic algorithms with different variants on mutation, crossover
or tournament details [16, 17, 21–23, 38]. There are also works exploiting simple greedy/locality ideas
[35–37] and reinforce learning ideas [19, 39] such as policy gradient.

All of the QAS works mentioned above are still searching quantum ansatz/architecture in discrete
domain, which increases the difficulty on search and is in general time consuming. Due to the close relation
between QAS and NAS together with the great success of differentiable NAS ideas in machine learning, we
here introduce a framework of differentiable QAS that enable end-to-end automatic differentiable QAS
(DQAS). This new approach unlocks more possibilities than previous works with less searching time and
more versatile capabilities. It is designed with general QAS philosophy in mind, and DQAS framework is
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hence universal for all types of circuit searching tasks, instead of focusing only on one type of quantum
computing tasks as previous work.

Brief review on QAOA. As introduced in [5], QAOA is designed to solve classical combinatorial
optimization (CO) problems. These problems are often NP complete, such as MAX CUT or MIS in the
graph theory. The basic idea is that we prepare a variational quantum circuit by alternately applying two
distinct Hamiltonian evolution blocks. Namely, a standard QAOA anstaz reads

|ψ〉 =
P∏

j=0

(eiHcγj eiHbβj )|ψ0〉, (1)

where |ψ0〉 should be prepared in the space of feasible solutions (better as even superposition of all possible
states, and in MAX CUT case |ψ0〉 = ⊗Hn|0n〉, where n is the number of qubits and H is transversal
Hadamard gates.)

In general, Hc is the objective Hamiltonian as Hc|ψ〉 = f (ψ)|ψ〉, where f (ψ) is the CO objective. For
MAX CUT problem on weighted graph with weight ωij on edge ij, Hc = −

∑
ωijZiZj up to some

unimportant phase. (We use the notation X/Y/Zi for Pauli operators on ith qubit throughout this work) Hb

is the mixer Hamiltonian to tunnel different feasible solutions, where Hb =
∑n

i=0 Xi is the most common
one when there is no limitation on feasible Hilbert space.

The correctness of such ansatz is guaranteed when p approach infinity as it can be viewed as quantum
annealing (QA), where we start from the ground state of Hamiltonian Hb as |+n〉 and go through
adiabatically to another Hamiltonian Hc, then it is expected that the final output state is the ground state of
Hc which of course has the minimum energy/objective and thus solve the corresponding CO problems.

If we relax the strong restrictions from the QA limit and just take QAOA as some form of variational
ansatz, then there are four Hamiltonians instead of two defining the ansatz.

• Hg the preparation Hamiltonian: we should prepare the initial states from zero product to the ground
state of Hg. In original case, Hg is the same as Hb.

• Hb the mixer Hamiltonian: responsible to make feasible states transitions happen.

• Hp the phase/problem Hamiltonian: time evolution under the phase Hamiltonian and the mixer
Hamiltonian alternately makes the bulk of the circuit, in original QAOA, Hp is the same as Hc.

• Hc the cost Hamiltonian: the Hamiltonian used in objectives and measurements where 〈ψ|Hc|ψ〉 is
optimized.

Moreover, such four Hamiltonian generalization of original QAOA can be further extended. For
example, Hb, Hp are not necessarily the same Hamiltonian for each layer of the circuit. Nonetheless, the
essence of such ansatz is that: the number of variational parameters is of order the same as layer number P
which is much less than other variational ansatz of the same depth such as typical hardware efficient VQE
or quantum neural network design. This fact renders QAOA easier to train than VQE of the same depth and
suffers less from barren plateaus [59]. And as QAOA ansatz has some reminiscent from QA, the final ansatz
has better interpretation ability than typical random circuit ansatz. It is an interesting direction to
automatically search for the four definition Hamiltonians or even more general layouts beyond vanilla
QAOA, to see whether there are similar quantum architectures that can outperform vanilla QAOA in CO
problems, this is where DQAS plays a role.

The physical intuition behind such QAOA type ansatz relaxation and searching originates from the close
relation between QAOA and quantum adiabatic annealing. In particular, we draw inspirations from efforts
to optimize annealing paths and boost performance for quantum annealers. We reckon at least two fronts to
search for better ansatz for the HQC algorithm. The first case is to actually inspect the standard QAOA
(which typically uses two alternating Hamiltonians to build the ansatz) and inquire if any ingredient may be
improved. For instance, given the four Hamiltonians for the quantum-adiabatic inspired ansatz, one may
search for a better initial-state-preparation Hamiltonian, or find better mixer Hamiltonians than the plain∑

i Xi for specific problems. Another inspiration derives from attempts to speed up quantum adiabatic
annealing via ideas like catalyst Hamiltonians [60, 61], counter diabatic Hamiltonians [62, 63], and other
ideas in shortcut to adiabaticity. These ultrafast annealing methods would entail design of complex
annealing schedules that deviate from the simple linear schedule interpolating between an initial
Hamiltonian and the target Hamiltonian. When these complex annealing paths are digitalized and projected
onto the quantum gate model with variational approximations, they may just live in the form of XX
Hamiltonians or local Y Hamiltonians. With these extra Hamiltonians, catalyst or counter diabatic, we
anticipate better performances with shallower QAOA-like circuits layout may be achieved.
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Algorithm 1. Differentiable quantum architecture search.

Require: p as the number of components to build the circuit; operation pool with c distinct unitaries; probabilistic model and its
parameters α with shape p × c initialized all to zero; reusing parameter pool θ initialized with given initializer with shape p × c × l,
where l is the max number of parameters of each op in operation pool.
1: while not converged do
2: Sample a batch of size K circuits from model P(k,α).
3: Compute the objective function for each circuit in the batch in the form of equations (3), (5) and (6) depending
on different problem settings.
4: Compute the gradient with respect to θ and α according to equations (8) and (9), respectively.
5: Update θ and α using given gradient based optimizers and learning schedules.
6: end while
7: Get the circuit architecture k∗ with the highest probability in P(k,α); and fine tuning the circuit parameters as θ∗ associated
with this circuit if necessary.
8: return final optimal circuit structure labeled by k∗ and the associating weights θ∗.

3. Methods

Overview. The task of DQAS is to select several unitaries to compose the circuit that minimize the
corresponding objective for a given task. The aim of DQAS is two-fold: one the one hand, DQAS
determines a potentially optimal circuit layout, on the other hand, it also identifies suitable variational
parameters for the circuit. To achieve the two goals at the same time, we regard DQAS as a bi-optimization
problem, where both the parameters determining the quantum structure and trainable weights on the
parameterized circuit are optimized via some gradient-based optimizers. To enable gradient descent search
on the quantum structure, we relax the discrete structure parameters into continuous domain, where
quantum architecture are viewed as the sample from some parameterized probabilistic model.

DQAS is presented as algorithm 1 with a visualized workflow in figure 1. We introduce the ingredients
for DQAS and the general workflow below. (See appendix A for more details and the glossary of DQAS
algorithm [47]).

Circuit encoding and operation pool. Any quantum circuit is composed of a sequence of unitaries with
and without trainable parameters, i.e.

U =

p∏
i=0

Ui(θi), (2)

where θi can be of zero length corresponding to the case that Ui is a fixed unitary gate. Hence, we formulate
the framework to cover circuit-design tasks beyond searching of variational ansatz.

In the most general term, these Ui can represent an one-qubit gate, a two-qubit gate or a higher-level
block encoding, such as eiHθ with a pre-defined Hermitian Hamiltonian H. This set of possible unitaries Ui

constitutes the operation pool for DQAS, and the algorithm attempts to assemble a quantum circuit by
stacking Ui together in order to optimize a task-dependent objective function.

We call the choice of primitive unitary gates in the operation pool along with the circuit layout of these
gates a circuit encoding. In the operation pool, there are c different unitaries Vj, and each placeholder Ui

should be assigned one of these Vj by DQAS. In this work, we refer to the placeholder Ui as the ith layer of
the circuit U, no matter such placeholder actually stands for layers or other positional labels. The circuit
design comes with replacement: one Vj from the operation pool can be used multiple times in building a
single circuit U.

Objectives. To enable an end-to-end circuit design, a suitable objective should be specified. Such
objectives are typically just sum of expectation values of some observables for HQC scenarios, such as
combinatorial optimization problems or quantum simulations. Namely, the objective in these cases reads

L = 〈0|U†HU|0〉, (3)

where H is some Pauli strings such as H = −
∑

〈ij〉 ZiZj for MAX CUT problems and |0〉 represents the
direct product state. This loss function L can be easily estimated by performing multiple shots of sample
measurements in quantum hardwares.

However, the objectives can assume more general forms for a HQC algorithm. For instance, one may
define more sophisticated objectives that not only depend on the mean value of measurements but also
depend on distributions of different measurements. Examples include CVaR [64] and Gibbs objective [37],
proposed to improve quality of solutions in QAOA. In general, DQAS-compatible objectives for HQC
algorithms assume the following form,

L =
∑

i

gi(〈0|U†fi(Hi)U|0〉), (4)
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where f i and gi are differentiable functions and Hi are Hermitian observables.
Extending the HQC algorithm to supervised machine learning setup that is commonly used in

classification tasks, the objective function has to be further generalized to incorporate quantum-encoded
data

∣∣ψj

〉
with corresponding label yj,

L =
∑

j

(∑
i

gi(
〈
ψj

∣∣U†fi(Hi)U
∣∣ψj

〉
) − yj

)2

. (5)

Beyond ansatz searching for HQC algorithms, DQAS can be used to design circuits for state preparation
or circuit compilations. In these scenarios, the objective is often taken as the fidelity between the proposed
circuit design and a reference circuit, and the objective for pure states now reads

L =
∑

j

〈
φj

∣∣U∣∣ψj

〉
, (6)

where
∣∣φj

〉
= Uref

∣∣ψj

〉
is the expected output of a reference circuit when

∣∣ψj

〉
is the input state. For a

state-preparation setup, the objective above is reduced to L = 〈φ|U|0〉, where |φ〉 is the target state. It is
worth noting that the overlap objective can induce barren plateau issues and the local version of
Hilbert–Schmidt test can be used as objectives to avoid barren plateaus [65, 66]. For a general task of
unitary learning or compilation, the dimension of

∣∣ψj

〉
can be as large as 2n where n is the qubits number,

such condition may be relaxed by sampling random inputs from Haar measure [67], which follows the
philosophy of machine learning, especially stochastic batched gradient descent.

Sampling the structures. With circuit encoding and operation pool, the task of DQAS is reduced to
assign p unitaries (selected from the operation pool) to the placeholder Ui in order to construct a circuit U
that minimizes an objective L(U). To facilitate the architecture search, it is tempting to relax the
combinatorial problem into a continuous domain, amenable to optimization via gradient descent. We thus
propose to embed the discrete structural choices into a continuously-parameterized probabilistic model.
For instance, we consider a probabilistic model P(k,α) where k is the discrete structural parameter
determining the quantum circuits structure and hence k is often denoted as an intermediate representation
(IR) for quantum circuit structure. For example, if IR k = [1, 3, 1] then it implies that the circuit structure
U(k) = V1V3V1 where V1 and V3 refer to elements in the predefined operation pool introduced earlier. In
the context of equation (2), U1 = V1, U2 = V3 and U3 = V1. α is the continuous variable characterizing
the distribution of the probabilistic model P. For naı̈ve mean field probabilistic model, αij stands for the
logarithmic probability to place Vj operator on the position of Ui placeholder. By such a design, we replace
the intimidating task of searching for optimal structure in discrete IR space k with the easier task of
optimizing continuous model parameters α.

In short, discrete random variables k are sampled from a probabilistic model characterized by
parameters α. A particular k determines the structure of the circuit U(k), and this circuit is used to evaluate
the objectives L(U). The final end-to-end objectives for DQAS reads

L =
∑

k∼P(k,α)

L(U(k, θ)). (7)

And L depends indirectly on both variational circuit parameters θ and probabilistic model parameters α,
which can be both trained via gradient descent using automatic differentiation. The summation in (7) is
over random circuit structures sampled from the distribution P.

Filling the circuit parameters. Since DQAS needs to sample multiple circuits U before deciding whether
the current probabilistic model is ideal, we adopt the circuit parameter sharing mechanism for
parametrized operators in the operation pool. We store a tensor of parameters θ with size p × c × l, where
p is the total number/layer of unitary placeholders to build the circuit, c is the size of the operation pool and
l is the largest number of parameters for each unitaries in the operation pool, we denoted this tensor as a
circuit parameter pool.

For example, if we place the jth operator Vj on the position of placeholder Ui as defined in equation (2),
then we should fill such parameterized operator of l parameters with l values from parameter pool: θ[i, j, :].
Therefore, every sampled parametrized Vj should be initialized with l parameters taken from the circuit
parameter pool depending on the placeholder index i and its operation-pool index j. With this circuit
parameter sharing mechanism, the variational parameters we need to maintain in architecture search is
reduced from lcp to lcp, i.e. an exponential reduction of trainable weights in total. This is the key to enabling
a large scale quantum architecture search in terms of the operation pool size and the depth of the circuit.
The number of possible quantum architectures is still exponential as cp. However, this exponential scaling in
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terms of operation pool size is not a severe issue as: (1) the operation pool can be highly customizable and
small enough by considering high-level encodings and (2) the exponential space can still be efficiently
reached via Monte Carlo sampling from a informed probabilistic model. Therefore, the introduction of
parameter sharing and architecture sampling render DQAS as a highly scalable approach for architecture
search with moderate resources.

Quantum and Monte Carlo gradients. DQAS needs to optimize two sets of parameters, α and θ, in
order to identify a potentially ideal circuit for the task at hand. The gradients with respect to trainable
circuit parameters θ are easy to determine

∇θL =
∑

k∼P(k,α)

∇θL(U(k, θ)). (8)

∇θL(U) can be obtained with automatic differentiation in a classical simulation and from parameter shift
[68] or other analytical gradient measurements [69] in quantum experiments.

As explained in algorithm 1, not all θ parameters would be present in a circuit which are sampled
according to the probability P(k,α) at every iteration. For missing parameters in a particular circuit, the
gradients are simply set to 0 as anticipated.

Calculations of gradients for α should be treated more carefully, since these parameters are directly
related to the outcomes of the Monte Carlo sampling from P(k,α). The calculation of gradient for the
Monte Carlo expectations is an extensively studied problem [58] with two possible mainstream solutions:
score function estimator [70] (also denoted as REINFORCE [71]) and pathwise estimator (also denoted as
reparametrization trick [72]). In this work, we utilize the score function approach as it is more general and
bears the potential to support calculations of higher order derivatives if desired [73, 74]. For unnormalized
probabilistic model, the gradient with respect to α is given by [47]

∇αL =
∑
k∼P

∇α ln P(k,α) L(U(k, θ)) −
∑
k∼P

L(U(k, θ))
∑
k∼P

∇α ln P(k,α). (9)

For normalized probability distributions, 〈∇α ln P〉P = 0 and we may simply focus on the first term.
Gradient of ln P can be easily evaluated via backward propagations on the given well-defined probabilistic
model. By considering baseline trick to reduce the estimation variance, a batch size in the order of 10 is
enough for a success DQAS training.

Probabilistic models. Throughout this work, we utilize the simplest probabilistic models: independent
category probabilistic model, also known as naı̈ve mean field model in energy model context. We stress that
more complicated models such as the energy based models [9, 75, 76] and autoregressive models [77–80]
may yield better performances under certain settings where explicit correlation between circuit layers is
important. Such sophisticated probabilistic models can be easily incorporated into DQAS, and we leave this
investigation as a future work.

The independent categorical probabilistic model we utilized is described as:

P(k,α) =

p∏
i=1

p(ki,αi), (10)

where the probability p in each layer is given by a softmax

p(ki = j,αi ) =
eαij∑
keαik

, (11)

where ki = j means that we pick Ui = Vj from the operation pool, and the parameters α are of the
dimension p × c. The gradient of such a probabilistic model can be determined analytically,

∇αij ln P(ki = m) = −P(ki = m) + δjm. (12)

4. Applications

DQAS is a versatile tool for near-term quantum computations. In the following, we present several concrete
examples to illustrate DQAS’s potential to accelerate research and development of quantum algorithms and
circuit compilations in the NISQ era [81]. Our implementation are based on quantum simulation backend
of either Cirq [82]/TensorFlow Quantum [83] stack or TensorNetwork [84]/TensorCircuit [85] stack.

Firstly, it is natural to apply DQAS to quantum circuits design for state preparation as well as unitary
decomposition. For example we can use DQAS to construct exact quantum circuit for GHZ state
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Figure 2. (a) The basic circuit for QFT on 3 qubits, T gate and H gate in the middle of the circuit can be easily arranged in the
same vertical moment with no gap. And there are six gaps left (two on each qubit) in this setup. (b) The QEM circuit for QFT
automatically found by DQAS. All slots are filled, DQAS is powerful enough to learn long range correlations so that it can fill the
gaps on qubit 1 which are separately located. The fidelity between the two circuits on noisy hardwares and the ideal circuit are
0.33 and 0.6, respectively.

preparation or Bell circuit unitary decomposition [47]. We focus on QEM and HQC context in details
below to demonstrate the power of DQAS for NISQ-relevant tasks.

Quantum error mitigation on QFT circuit. Next, we demonstrate that DQAS can also be applied to
design noise resilient circuits that mitigate quantum errors during a computation. The strategy we adopt in
this work is to insert single qubit gates (usually Pauli gates) into the empty slots in a quantum circuit, where
the given qubit are supposed to be found in idle/waiting status. Such gate-inserting technique can mitigate
quantum errors since these extra unitaries (collectively act as an identity operation) can turn coherent
errors into stochastic Pauli errors, which are easier to handle and effectively reduce the final infidelity.
Similar QEM tricks are reported in related studies [86, 87].

The testbed is the standard circuit for quantum Fourier transformation (QFT), as shown in figure 2(a).
We assume the following error model for an underlying quantum hardware. In between two quantum gates,
there is a 2% chance of bit flip error incurred on a qubit. When a qubit is in an idle state (with much longer
waiting time), there is a much higher chance of about 20% for bit flip errors. Although the error model is
ad-hoc, it does not prevent us from demonstrating how DQAS can automatically design noise-resilient
circuits.

Looking at figure 2(a), there are six empty slots in the standard QFT-3 circuit. Hence, we specify these
slots as p = 6 placeholders for a search of noise-resilient circuits with DQAS. The search ends when DQAS
fills each placeholder with a discrete single-qubit gate such that the fidelity of the circuit’s output (with
respect to the expected outcome) is maximized in the presence of noises.

If the operation pool is limited to Pauli gates and identity, {I, X, Y, Z}, then DQAS recommends a rather
trivial circuit for error mitigation. In short, DQAS fills the pair gaps (of qubit 0 and qubit 2) with the same
Pauli gate twice, which together yields an identity, in order to reduce the error in the gap. As for qubit 1,
where a single gap occurs at the beginning and the end of the circuit as shown in figure 2(a), DQAS simply
fills these gaps with nothing (identity placeholder). However, if we allow more variety of gates in the
operation pool, such as S gate and T gate, then more interesting circuits can be found by DQAS. For
instance, figure 2(b) is one such example. In this case, DQAS fills the two gaps of qubit 1 with a T gate each.
This circuit cannot be found by the simpler strategy of inserting unitaries into consecutive gaps. Thus,
DQAS provides a systematic and straightforward approach to identify this kind of long-range correlated
gate assignments that should effectively reduce detrimental effects of noise.

We also carried out DQAS on QFT circuit for 4 qubits with p = 12 circuit gaps as shown in figure 3(a).
DQAS automatically finds better QEM architecture which outperforms naı̈ve gate inserting policies again.
Figure 3(b) displays one such example. The interesting patterns of long-range correlated gate insertions are
obvious for quibt 2. It is also clear that DQAS learns that more than two consecutive gates can combined
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Figure 3. (a) The basic circuit for QFT on 4 qubits, some of the gates can be easily arranged in the same vertical moment with
no gap. And there are 12 gaps left in this arrangement. (b) The QEM circuit for QFT automatically found by DQAS. The fidelity
between the two circuits on noisy hardwares and the ideal circuit are 0.13 and 0.46, respectively.

collectively to render identity such as the three inserted gates for qubit 0. Further details on the search for
optimal QEM architectures and comprehensive comparison on experiment values of final fidelities can be
found in the appendix H [47].

In summary, DQAS not only learns about inserting pairs of gates as identity into the circuit to mitigate
quantum error, but also picks up the technique of the long-range correlated gate assignment to further
reduce the noise effects. This result is encouraging and shows how instrumental DQAS as a tool may be
used for designing noise-resilient circuits with moderate consumption of computational resource. In this
study, we only adapt the simple gate-insertion policy to design QEM within DQAS framework. We expect
more sophisticated QEM methods may also be adapted to work along with DQAS to identify novel types of
noise-resilient quantum circuits. This is a direction that we will actively explore in follow-up studies.

QAOA ansatz searching. QAOA introduces the adiabatic-process inspired ansatz that stacks alternating
Hamiltonian evolution blocks as e−iθH, where H could be different Hermitian Hamiltonians. QAOA can
obtain better approximation ratio with increasing number of repetitive circuit blocks P as its infinite P limit
is equivalent to quantum adiabatic evolution. To the end of employing DQAS to design parametrized
quantum circuits within the HQC paradigm for algorithmic developments, we adopt a higher-level circuit
encoding scheme as inspired by QAOA. More specifically, the operation pool consists of e−iθH blocks with
different Hermitian Hamiltonians and also parameter free layers of traversal Hadamard gates ⊗nH. In
comparison to assembling a circuit by specifying individual quantum gates, this circuit encoding scheme
allows a compact and efficient description of large-scale and deep circuits. For simplicity, we dub the
circuit-encoding scheme above as the layer encoding.

For illustrations, we apply DQAS to design parametrized circuit for the MAXCUT problem in this
subsection in QAOA-like fashion. Aiming to let DQAS find ansatz without imposing strong QAOA-type
assumptions on the circuit architecture, we expand the operation pool with additional Hamiltonians of the
form Ĥ = −

∑
〈ij〉OiOj and Ĥ =

∑
i Oi, where O ∈ {X, Y, Z}; and we refer to these operations as the

xx-layer, rx-layer, rz-layer and so on. In addition, we also add the transversal Hadamard gates and denote it
as the H-layer. All these primitive operations can be compiled into digital quantum gates exactly.

Next, let us elaborate on an interesting account that DQAS automatically re-discovers the standard
QAOA circuit for the MAXCUT problem. To begin, we distinguish two settings: instance learning (for a
single MAXCUT problem) and ensemble learning (for MAXCUT problems on ensemble of graphs). As
noted in [88], the expected outputs by an ensemble of QAOA circuits (defined by graph instances from, say,
Erdös–Rényi distributions or regular graph distributions) with fixed variational parameters θ are highly
concentrated. The implication of such concentration is that the optimal parameters (for an arbitrary
instance in the ensemble) can be quite close to being optimal for the entire ensemble of graph instances.
This fact not only increases the stability of the learning process with an ensemble of data inputs, but also
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Figure 4. Metrics on DQAS training (depth p = 5) for MAX CUT problem of degree-3 regular graph ensemble with 8 nodes.
The upper plot shows the expected energy/averaged cut value in the training process, the loss is approaching −8.8 which reflects
the result from P = 2 QAOA with H, zz, rx, zz, rx layer arrangement. The lower plot indicates how the probability of such
optimal layout is increased when the probabilistic model underlying is updated.

Figure 5. Schematic workflow for reduced graph ansatz search on MAX CUT setup. In reduced ansatz searching, there are
various reduced graph backend zz-layer in the operation pool. These reduced graph are sub graph instances from the problem
graph instance. DQAS can not only find the optimal layout and optimal parameters θ, but also find the best reduced graph for
these zz-layers.

makes QAOA more practical when the outer optimization loop can be done in this once-for-all fashion. In
this work, we apply DQAS to both instance learning task and regular graph ensemble learning task [47].

For an ensemble learning on regular graph ensemble (node 8, degree 3), we let DQAS search for an
optimal circuit design with p = 5. By using the aforementioned operation pool comprising the H-layer,
rx/y/z-layer and zz-layer with the expected energy for the MAXCUT Hamiltonian as objective function,
DQAS recommends the optimal circuit with the following layout: H, zz, rx, zz, rx layers, which coincides
exactly with the original QAOA circuit. For metrics in the searching stage, see figure 4.

We also carried out DQAS on QAOA ansatz searching with multiple objective consideration on
hardware details as well as double-layer block encoding for operations. For details, see the appendix I [47].

Reduced graph ansatz searching. To the end of designing circuits shallower than QAOA, another
approach worth attempt is to re-define the primitive circuit layers in the operation pool. For instance, the
zz-layer block is usually generated by the Ising Hamiltonian with the full connectivity of the MAXCUT
problem. However, if the underlying graph of a zz-layer is only a subgraph then the number of gates would
be reduced. Suppose we now replace the standard zz-layer (with full connectivity of the original problem)
with a set of reduced zz-layers (each generated by a subgraph containing at most half of all edges in the
original graph), then a circuit comprising 2 such reduced zz-layers is shallower than the standard P = 1
QAOA circuit. As summarized below, ansatz built from such reduced zz-layers is more resource efficient and
outperforms the vanilla QAOA layout using the same number of quantum gates. Figure 5 summarizes the
DQAS workflow in searching ansatz with reduced zz-layers.
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To demonstrate the effectiveness of this strategy, we consider the circuit design under instance learning
setup in which reduced zz-layers in the operation pool are induced by the graph connectivity of a particular
instance. In this numerical experiment, we again set out to design a p = 5 circuit for n = 8 qubits. More
specifically, we generate 10 subgraph with edge density lower than half of the base graph and substitute the
base zz-layer with these 10 newly introduced reduced zz-layers in the operation pool. In such a setup, DQAS
is responsible for finding (1) an optimal circuit layout of different types of layers, (2) best reduced graphs
that give rise to the zz-layer in circuit, and (3) optimal parameters θ for rx/y/z-layer and zz-layer.

Here we give a concrete example. For an arbitrary graph instance drawn from the Erdös–Rényi
distribution with a MAX CUT of 12, DQAS automatically design a circuit that exactly predicts the MAX
CUT of 12. This p = 5 circuit is composed of following layers: rx-layer, zz-layer, zz-layer, ry-layer and
rx-layer. Note the two zz-layers are induced by distinct sets of underlying subgraphs with only four edges
each. As a comparison, the P = 1 vanilla QAOA gives expected MAX CUT of 10.39, while P = 2 vanilla
QAOA predicts 11.18. In terms of overlap with exact MAX CUT configuration state, the reduced ansatz
found by DQAS has nearly 100% success probability for one-shot measurement to get the MAX CUT value
while P = 2 vanilla QAOA has 47% success probability to get the correct MAX CUT value. The reduced
ansatz designed by DQAS consumes about the same amount of quantum resources as the P = 1 QAOA
circuit yet even outperforms the vanilla P = 2 QAOA circuit. We stress that such an encouraging result is
not a special case. By using the reduced ansatz layers, we can consistently find reduced ansatz that
outperforms vanilla QAOA of the same depth for MAX CUT problems on a variety of unweighted and
weighted graphs [47].

DQAS not only can learn QAOA from scratch, but also can easily find better alternatives with shorter
circuit depth with an operation pool using slightly tweaked Hamiltonian evolution blocks as primitive
circuit layers. This last achievement is of paramount importance in the NISQ era where circuit depth is a
key limitation.

5. Discussions

DQAS is a versatile and useful tool in the NISQ era. Not only can DQAS handle the design of a quantum
circuit, but it can also be seamlessly tailored for a specific quantum hardware with customized noise model
and native gate set in order to get best results for error mitigation. We have demonstrated the potential of
DQAS with the following examples: circuit design for state preparing and unitary decomposition
(compilation), and noiseless and noisy circuit design for the hybrid quantum classical computations. In
particular, we also introduce the reduced ansatz design that proposes shallower circuits that outperforms
the conventional QAOA circuits that are inherently more resource intensive ansatz.

In conclusion, we re-formulate the design of quantum circuits and HQC algorithm as an automated
DQAS. Inspired by DARTS-like setup in NAS, DQAS works in a differentiable search space for quantum
circuits. By tweaking multiple ingredients in DQAS, the framework is highly flexible and versatile. Not only
can it be used to design optimal quantum circuits under different scenarios but it also does the job in a
highly customized fashion that takes into account of native gate sets, hardware connectivity, and error
models for specific quantum hardwares. The theoretical framework itself offers a fertile ground for further
study as it draws advanced concepts and techniques from the newly emerged interface of differential,
probabilistic, and quantum programming paradigms.

Note added

After this work was posted on arXiv, a relevant paper [89] was also posted. This paper also proposed the
idea of using quantum architecture search as a promising strategy for designing hardware-specific and
noise-resilient quantum circuits. Conceptually, this work shares some similarities with our work. The
approach utilized in their work is of random search and evolutionary nature, where the circuit sampling
process stays evenly distributed (i.e. a fixed probabilistic model in our context) while our DARTS-inspired
workflow iteratively updates both circuit parameters and the circuit-structure probabilistic model. Together,
these two works validate the benefits of using QAS framework to optimize quantum circuits and should
help substantially in establishing quantum advantage in the NISQ era.
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