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In the pursuit of numerically identifying ground states of quantum many-body systems, approximate quantum
wave function ansatzes are commonly employed. This study focuses on the spectral decomposition of these
approximate quantum many-body states into exact eigenstates of the target Hamiltonian, which reflects the
intricate physics at the interplay between quantum systems and numerical algorithms. Here, we examine various
parametrized approximate quantum states constructed from neural networks, tensor networks, and quantum
circuits, employing differentiable programming to numerically approximate ground states and imaginary-time
evolved states. Our findings reveal a consistent exponential pattern in the energy eigenbasis decomposition
contributions of approximate states across different ansatzes, optimization objectives, and quantum systems,
characterized by remarkably small decay rates, i.e., high effective temperatures. This finding is counterintuitive
for high-fidelity approximate ground states: While the total contribution from excited states can be made
sufficiently small, the residual spectral weight does not decay rapidly with energy. This behavior is an intrinsic
property of the variational ansatz, independent of the approximation’s overall accuracy. The effective temperature
is related to ansatz expressiveness and accuracy and shows phase transition behaviors in learning imaginary-time
evolved states. The universal picture and unique features suggest the significance and potential of the effective

temperature metric in characterizing approximate quantum states.

DOLI: 10.1103/zpjv-bm5c

I. INTRODUCTION

Understanding the ground-state properties of quantum
many-body systems is a central challenge in modern physics,
with broad implications ranging from fundamental principles
of quantum complexity theories to the design of materials and
quantum technologies [1-4]. The exponentially large Hilbert
space with the system size often precludes analytical solutions
and exact numerical methods, necessitating the development
of approximate numerical methods, and approximate quantum
wave function ansatzes have proven to be powerful for their
good trade-off between expressivity and complexity.

In this paper, we investigate a profound and previously un-
explored aspect of approximate quantum states: the effective
temperature that characterizes their spectral properties. We
apply a concept analogous to temperature, arising from statis-
tical mechanics [5], to characterize the spectral distribution of
quantum many-body pure states, specifically the approximate
states obtained through optimizing different ansatzes.

The success of variational methods is typically measured
by energy accuracy or fidelity. However, less is known about
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the spectral structure of the residual error that persists even
in high-fidelity approximations. This work investigates the
residue error structure and reveals a surprising universality
in the effective temperatures of approximate quantum ground
states, irrespective of the ansatz structure, objective function,
training wellness, or underlying physical system. By decom-
posing the approximate states into the exact eigenstates of
the system Hamiltonian, we observe a spectrum extending
to the high-energy end with exponential decay of small de-
cay factors, interpreted as inverse effective temperatures. The
consistently high or even negative effective temperatures (in-
verse temperature B < 0.3 for most cases) imply a nearly
flat spectrum contribution; namely, we cannot directly ig-
nore the excited-state components at high-energy regimes and
the consequent presence of spectral weight at high energies
has practical implications for calculating physical observ-
ables such as high orders of the Hamiltonian operator, which
challenges prevailing notions about variational approxima-
tion error. The effective temperature also shows an intriguing
two-stage behavior when approximating pure states of fi-
nite “temperature.”’. The effective temperature offers a lens
to assess the accuracy and reliability of different variational
ansatzes and algorithms and the universal pattern could play
an important role in understanding complex quantum systems
or designing efficient methods.

II. SETUP

A wave function ansatz comprises a family of parametrized
quantum states |{(6)) with tunable parameters 6. Such
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quantum states usually admit a compact and scalable rep-
resentation on classical computers or quantum computers to
circumvent the challenge of the exponentially large Hilbert
space. The approximate state |y) within the manifold of a
given ansatz can be obtained through variational optimiza-
tion [6] mingL(|Y¥(0))), where L is the objective function
built on top of the wave function. Specifically, energy fidelity
Lg = (Y(O)H|Y()) is often utilized to obtain the ground
state of the system Hamiltonian H. The Hamiltonian has an
exact energy spectral decomposition as H =) _,_, &;l&;)(&il,
with |gy) being the exact ground state. Additionally, we also
frequently utilize the fidelity objective Lr = 1 — |(gg|¥(6))|?
for numerically approaching ground states. Unlike the energy
objective, minimizing fidelity objective penalizes deviation
from the ground state equally for all excited states, offering no
inherent preference for suppressing higher-energy excitations
more strongly than lower-energy ones. Throughout this work,
we perform optimization via gradient descent, namely, the
variational parameters are updated in each step according to
AB x dL/36, where the gradients can be efficiently evaluated
using automatic differentiation [7-10].

For an approximate state |1/), we decompose it on the basis
of the exact eigenstates |¢;) of Hamiltonian H:

W) =Y ciles. (1)
The spectral decomposition coefficients |c;|> are the central
focus of our study. We find that the pairs of (¢;, lci)?) statisti-

cally follow an exponential decay for the approximate ground
state, analogous to Boltzmann distribution,

lei]* oc e Pe, 2)

where the decay factor B is defined as the inverse effective
temperature for the pure state |¢) under investigation.

To gain deeper insights into the spectrum pattern of ap-
proximate quantum states, we evaluate additional target states
beyond the ground state |ep). This set of states is directly
parametrized with an inverse effective temperature § as

1
lp(B)) = =— Y e Pil%ey), 3)

T Zp) £

where Z(B) = /) _; e P4 is the normalization factor. These
states can be understood as imaginary-time evolved states
with time B from the initial state |[¢(0)) = 1/Z(0));|e:).
Therefore, we call the target states imaginary-time evolved
states (ITES). Exact ITES by definition admits an exponential
decay for spectral decomposition with inverse temperature .
We investigate how spectral properties change for approxi-
mate ITES |¢) obtained by optimizing the fidelity objective
Lr(B) =1—[{¢(B)|¥(8))|>. This objective reduces to the
ground-state target in the 8 — oo limit. We find that the
approximate ITES spectrum shows an evident two-stage be-
havior for all ansatzes: B from approximate ITES successfully
matches B for small 8 (high-temperature regime) and shows
strong deviation B < B for large B (low-temperature regime).
More importantly, the transition point 8* characterizes the
lowest effective temperature a given ansatz can reach and
implies the intrinsic power of the corresponding ansatz. ITES
and their approximation offer a unique platform to explore the

interplay between spectral properties, ansatz expressiveness,
and optimization hardness. Notably, the conclusion remains
qualitatively the same when the coefficient for each eigenstate
in ITES acquires an extra random phase for generality, i.e.,

lp(0)) = 1/Z(0) Y, e |&;).

III. METHODS

We employ various quantum wave function ansatzes to
demonstrate the universality of our findings, including (1)
tensor-network-based ansatz including matrix product states
(MPS) [11-13] and projected entangled-pair states (PEPS)
[14,15], (2) neural quantum states (NQS) built on top of neural
networks [16,17], (3) output states from variational quan-
tum circuits [18,19] such as variational quantum eigensolvers
(VQE), [20,21], and (4) vector state ansatz (VEC), where each
wave function component is directly modeled as a trainable
parameter. We also comment on the relevance of our results to
quantum approximate optimization algorithms (QAOA) [22]
(see the Supplemental Material for details on these ansatz
structures [23]). We apply these ansatzes to different system
Hamiltonians on different lattice geometries and optimize
both objectives Lg and Lr. The main findings of this paper
are summarized in Fig. 1.

IV. RESULTS FOR APPROXIMATE GROUND STATES

Since producing the exact spectrum requires a full diag-
onalization of the Hamiltonian, our numerical study focuses
on systems up to size L = 16. We note that the effective tem-
perature can be related to measurable quantities, enabling its
estimation beyond exact diagonalization limits (see the Sup-
plemental Material [23]). We use TensorCircuit-NG [24] for
the numerical simulation of variational training and QuSpin
[25] for the exact diagonalization of the Hamiltonian within
full Hilbert space or specific charge sectors.

We focus on the two-dimensional (2D) XXZ model on a
square lattice with spin-1/2 degrees of freedom and periodic
boundary conditions:

H =Y "LXX; + LYY; + J.ZZ;. 4)
(ij)

where X (Y, Z); are Pauli matrices on lattice site i and (ij)
denotes the nearest-neighbor sites. The phase diagram of this
model features J{ = 1 that separates the spin-flipping phase

and the antiferromagnetic phase when J, = J, = 1 [26].
Using different ansatzes and variational optimization
against Lg or Lp, we obtain different approximate ground
states. The typical spectral decomposition patterns (g;, |c;|?)
of these states are shown in Figs. 2(a) and 2(b) (see the
SupplementalMaterial for more spectral decomposition re-
sults from other variational ansatzes [23]). We find a robust
exponential relation in the spectral decomposition across dif-
ferent ansatzes and training stages. The exponential decay
factor B represents inverse effective temperature. The training
dynamics of B for different ansatzes and objectives is shown
in Fig. 3. We find that the effective temperature 1/8 is high
during training, and this is particularly true for optimized
approximate ground states where B < 0.3 in most cases. Such
a small B unexpectedly contrasts sharply with imaginary-
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FIG. 1. Sketch of the effective temperature as a metric characterizing different systems and numerical methods. The effective temperature
(1/B) can be extracted from the estimated slope of the approximate quantum state spectral decomposition (center inset). The metric varies
with different systems, methods, objectives, and training wellness. However, universal features remain the same and are valuable in diagnosing
the capacity of different numerical methods. In general, B is small and can be even negative, indicating a nearly flat excited-state spectrum of

approximate ground states.

time evolution-based approaches where a large B is expected.
During variational training, a general trend emerges where B
first increases and then decreases, implying an upper bound
for the possible B of a given ansatz. The initial increase in
B corresponds to the optimizer quickly finding the correct
low-energy manifold of the Hilbert space. The subsequent
decrease in f reflects the difficulty of fine-grained optimiza-
tion within that manifold, where further reducing the energy
often involves complex, nonlocal reconfigurations of the wave
function that can slightly “heat up” the spectral tail, rendering
the residual spectral error more complex and “flatter.” Besides,
training dynamics of B show similar patterns for both objec-
tives within the same ansatz, while B for optimizing energy
objectives Ly is typically higher due to the unequal penalty on
different excited states. Conversely, fidelity objective equally
penalizes all excited states and the nonzero B in this case
is highly nontrivial, which can be attributed to the physical
prior encoded in the ansatz structures. This understanding is
validated by the near-zero B for VEC ansatz, which contains
the least physical prior in the structure. Furthermore, the B
trends are more closely aligned within the same family of
ansatzes, reflecting its potential power to diagnose intrinsic
properties in these ansatzes. The universality and validness of
the results are also confirmed with other system sizes, models,

and lattice geometries (see the Supplemental Material for
details [23]).

A crucial question is whether these findings are inde-
pendent of the specific optimization algorithm used. To
address this, we performed additional simulations using the
standard imaginary time evolution algorithm time-evolving
block decimation (TEBD). Crucially, even states prepared
via TEBD—a method specifically designed to suppress
high-energy components—exhibit a persistent high effective
temperature (see Supplemental Material for details [23]). This
provides strong evidence that the slow spectral decay is not
an optimization flaw but a fundamental characteristic of the
variational ansatz itself, where the restricted manifold leaves
a “hot” imprint on the spectral properties.

V. RESULTS FOR APPROXIMATE IMAGINARY-TIME
EVOLVED STATES

To better understand the spectrum pattern and the un-
derlying mechanism of effective temperature in approximate
ground states, we evaluate approximate ITES whose targets
have strictly exponential decay spectrum patterns. For dif-
ferent target B’s, we identify a two-stage behavior with a
putative phase transition or crossover in between. For the
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FIG. 2. Spectral decomposition of approximate states. The 2D XXZ model on a 4 x 3 square lattice with J, = J, = 1, J; = 0.8 and MPS
ansatz with bond dimension y = 32 are employed. The optimization objective is the infidelity between approximate states and the target
states. The target states are chosen as the ground states for panels (a) and (b) and imaginary-time evolved states |¢(8)) with 8 = 0.3 (high
temperature) (c) and 8 = 0.6 (low temperature) (d). Overlaps with different energy eigenstates are depicted as scatter plots in red and gray for
approximate and target states, respectively. The optimization is at the early stage for panel (a) and converged for panels (b)—(d) at the steady
stage. The logarithmic overlaps with excited eigenstates show a linear pattern during training with varying fitted slope 3, as known as. inverse
effective temperature. The fitted line is shown in dashdot. When the target state is ITES, there is a phase transition in the spectrum patterns of
the approximate state. For small 8 in panel (c), the optimized approximate state exhibits a near-perfect correspondence with the target state
overlap, with a fitted slope B matching 8 = 0.3. Conversely, for large 8 in panel (d), the overlaps from approximate states exhibit distinct
behaviors—an exponential decay in the lower-energy regime and a plateau in the higher-energy regime. This behavior leads to a poor linear

fit, characterized by a deviating slope B < 8.

high-temperature regime of small 8, the approximate ITES
conforms to the strict exponential decay spectrum pattern
with B = B, as shown in Fig. 2(c). On the contrary, for the
low-temperature regime of large §, the spectral decomposi-
tion follows the exponential decay only for the low-energy
part, while a nearly flat spectrum emerges from high-energy
contributions. If we attempt to extract a single exponential
decay factor B in this case, its value is significantly smaller
than the exact 8, as shown in Fig. 2(d). It is worth not-
ing that the nearly flat spectrum deviation is not due to
numerical machine precision, as points |c;|*> of the same
magnitude conform to the exponential decay for small 8 but
fail to do so for large B (see the Supplemental Material for
details [23]).

The results of B of approximate ITES for different target
B’s are shown in Fig. 4(a), where the two-stage behavior is
evident. For each ansatz, there is a transition point 8* when f
begins to deviate from S and the associated spectrum pattern
moves from Fig. 2(c) to Fig. 2(d). g* is a figure of merit
as it marks the critical temperature that the ansatz can accu-
rately represent and sets an upper bound on B that an ansatz
can reach. More importantly, 8* is also correlated with the
expressive capacity of the ansatz, as a higher * generally
implies a better fidelity. In the low-temperature limit 8 — oo,
the results for approximate ITES are reduced to the results for
approximate ground states by optimizing L.

We further remark on the fidelity results shown in Fig. 4(b)
with varying methods and B’s. For low-accuracy ansatzes,
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FIG. 3. Effective temperature during variational training target-
ing the ground states. The objectives are energy Lr (a) and fidelity
Lr (b), respectively. The results are obtained from the 2D XXZ
model on a 4 x 4 square lattice with J, = J, =1, J; = 0.8. During
training, points move to the left toward higher accuracy and B first
increases and then decreases in general. This nonmonotonic “rise-
and-fall” trajectory for the inverse temperature is a key feature of the
training dynamics, reflecting the difficulty of perfectly suppressing
all high-energy components within a restricted manifold.

the fidelity gets improved with increasing B as |¢p(B8)) of
larger B is closer to the ground state and has smaller en-
tanglement. Such less entangled states can be better suited
in ansatzes of limited expressiveness. Conversely, for high-
accuracy ansatzes, the expressive capacity is sufficient for
targeting any ITES, and the bottleneck is the optimization
difficulty. Since the number of optimization steps is fixed in
our simulation, a slower optimization speed results in a worse
final fidelity with increasing B. In other words, when the
target is closer to the ground-state manifold, the optimization
landscape is harder to navigate (see quantitative analysis for
the expressiveness and optimization hardness in Supplemental
Material [23]).

VI. DISCUSSIONS AND CONCLUSION

Some hints of the general picture presented in this paper
are previously reported in QAOA [27,28] and MPS cases
[29], where only the optimization of Lg is considered. In
the QAOA case, the output states were found to approximate
Gibbs distribution with 8 &~ 0.2—0.3 [27], consistent with the
findings in this study, as QAOA can be regarded as a special
limit of VQE ansatz. In the MPS case, a nearly flat spectrum is
identified [29]. Given that the density of states was effectively
considered in their work, the spectrum appeared flatter as the
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FIG. 4. Effective temperature and fidelity of approximate ITES
with different 8’s. The results are obtained from the 2D XXZ model
on a 4 x 3 square lattice with J, = J, = 1, J, = 0.8. (a) The inverse
effective temperature 3 shows a two-stage behavior with varying B.
B* (insets) marks the deviation of B from target 3, separating the two
stages. (b) The fidelity of approximate ITES with different 8’s. For
high-accuracy methods, the fidelity decreases with increasing 8 due
to the increased optimization hardness. For low-accuracy methods,
the fidelity increases with increasing B as the target states are less
entangled and easier to approximate.

exponential decay of small positive B was compensated with
the high density of states in the middle-energy regime.

The effective temperature has profound and practical im-
plications for numerical methods and many-body systems. For
instance, the presence of a significant high-energy tail in the
spectral distribution, a direct consequence of small ,B , can lead
to unexpected fragility in variance estimation as mentioned
in Ref. [29]. The variance H? is just an example for opera-
tor f(H), with expectation (V| f(H)|y) =), lci|? f(s;). The
operator expectation is highly sensitive to tiny high-energy
components when f(¢) is significantly larger for high-energy
inputs. The expectation of f(H) = e*¥ not only exhibits ex-
perimentally observable effects but also provides a practical
route to estimate B in a scalable way beyond exact diago-
nalization sizes. As elaborated in Supplemental Material [23],
the effective temperature j leaves an observable signature on
the expectation value of operators such as ¢/, Specifically,
the function (y|e*|vy) as a function of « is minimized at
o = B. Through this scalable proxy, we successfully give
the estimate on effective temperature for approximate matrix
product states obtained from density matrix renormalization
group in large-scale systems (L = 128). We found that the
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resulting high-fidelity ground states still possess an extremely
small inverse effective temperature (B < 0.01), confirming
our findings well beyond exact diagonalization regime.

The persistence of the exponential decay spectrum, par-
ticularly under the fidelity objective that lacks an intrinsic
bias against high-energy states, suggests that the effective
temperature is a fundamental characteristic imprinted by the
variational ansatz manifold rather than solely by the target
Hamiltonian’s energy landscape. The effective temperature
also has strong relevance to the expressive capacity of ansatzes
as B* values differ for different ansatzes. Consequently, the
metric and the methodology explored in this paper serve as a
guiding principle to help design better approximate quantum
ansatzes and variational algorithms.

The effective temperature metric opens up several in-
triguing future research directions. We can quantitatively
investigate the scaling of effective temperature 8 and its criti-
cal value B* with respect to varying system sizes, Hamiltonian
parameters, and ansatz structure parameters, to gain deeper
insights into the physics of the system and the intrinsic pat-
terns in numerical methods. The ITES proposed in this paper
are also of independent academic interest, as they provide
a platform to explore the trade-off between expressiveness
and optimization hardness, as well as host a putative phase
transition at 8*, the nature and universal behavior of which
merit future exploration. It is also crucial to validate the gen-
eral picture of spectrum patterns on more ansatzes, including
mean-field ansatzes, physics-inspired ansatzes [30], and ad-

vanced hybrid variational ansatzes [31,32], and more models,
including integrable systems, many-body localized systems,
and fermionic systems.

In this paper, we have identified a universal pattern in
the spectrum of approximate ground states. We define the
effective temperature B to characterize the slow exponential
decay in the spectrum and investigate the behavior of B with
different systems, ansatzes, objectives, and training steps. To
better understand the underlying mechanism for this metric,
we further propose ITES targets and identify the two-stage
behaviors in approximating ITES with the figure of merit
critical inverse effective temperature B*. We believe that the
universal picture presented here provides a fresh and pow-
erful perspective on benchmarking numerical algorithms and
understanding quantum many-body systems.
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